В равнобедренном треугольнике с периметром 32 см длина отрезка, соединяющая середины боковых сторон, равна 6 см. Найдите диаметр окружности, вписанной в этот треугольник
Объяснение:
Т.к. средняя линия 6 см , то основание 12 см , по т. о средней линии.
1. На прямой а возьмите точку В в некотором отдалении от проекции точки А ; 2. С циркуля постройте дугу с центром в точке А радиусом АВ таким образом, чтобы дуга пересекла прямую в двух точках. Зафиксируйте вторую точку С; 3. Постройте две окружности равного радиуса с центрами в точках пересечения прямой и дуги таким образом, чтобы эти окружности пересеклись в двух точках. Пусть это будут точки D и F. 4. Соедините точки пересечения окружностей, получим отрезок DF. Если вы всё сделали правильно, эти точки будут на одной прямой с точкой А. Полученная прямая и есть искомый перпендикуляр к прямой а. Доказательство: Точки В и С находятся на равном расстоянии от точки А по построению, Точки D и F находятся на равном удалении от отрезка В и С так же по построению. Точка А лежит на прямой, проходящей через точки D и F.
В равнобедренном треугольнике с периметром 32 см длина отрезка, соединяющая середины боковых сторон, равна 6 см. Найдите диаметр окружности, вписанной в этот треугольник
Объяснение:
Т.к. средняя линия 6 см , то основание 12 см , по т. о средней линии.
Тогда равные боковые стороны (32-12):2=10 ( см).
d=2r , а радиус можно найти из формулы S=1/2*P*r.
Площадь треугольника можно найти по ф. Герона ,
р=32:2=16 , р-а=16-10=6, р-в=16-10=6 , р-с=16-12=4,
S=√( 16 *6*6*4)=4*6*2=48 (см²)
S=1/2*P*r , 48=1/2*32*r , r=3 см ⇒ d=6 см
Формула Герона S= √p (p−a) (p−b) (p−c) , полупериметр p= 1 ÷2 *(a+b+c).