М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
topwkolnik
topwkolnik
09.04.2021 01:08 •  Геометрия

Знайдіть координати векторів AK і AB якщо KB=(2;3)

👇
Открыть все ответы
Ответ:
Khghchcghcg123321
Khghchcghcg123321
09.04.2021
Дано: δ авс ∠с = 90° ак - биссектр. ак = 18 см км = 9 см найти:   ∠акв решение.       т.к. расстояние от точки  измеряется по перпендикуляру, то опустим его из (·) к  на гипотенузу ав и обозначим это расстояние км.       рассмотрим полученный δ акм, т.к.  ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из  условия, катет км = 9/18 = 1/2 ак, то  ∠кам = 30°.        т.к. по условию ак - биссектриса, то  ∠сак =∠кам = 30°       рассмотрим  δакс. по условию  ∠аск = 90°; а∠сак = 30°, значит,  ∠акс = 180° - 90° - 30° = 60°       искомый  ∠акв - смежный с  ∠акс, значит,  ∠акв = 180° - ∠акс = 180° - 60° = 120°  ответ: 120° подробнее - на -
4,4(53 оценок)
Ответ:
Пусть О - точка пересечения медиан треугольника АВС. Треугольники AOP и BOM подобны по двум  углам (два угла равны по условию, еще два угла вертикальные). Тогда:
\frac{AO}{OB} = \frac{PO}{OM}
Так как медианы точкой пересечения делятся в отношении 2:1, то:
\frac{ \frac{2}{3} AM}{ \frac{2}{3} BP} = \frac{\frac{1}{3}BP}{\frac{1}{3}AM}
\\\
\frac{ AM}{ BP} = \frac{BP}{AM}
\\\
AM^2=BP^2
\\\
\Rightarrow AM=BP=1
Если медианы, проведенные к двум сторонам треугольника равны, то и сами стороны также равны. Значит, АС=ВС и треугольник АВС равнобедренный.
Рассмотрим треугольник АМС. По теореме косинусов, учитывая соотношение АС=2СМ, получим:
AM^2=AC^2+CM^2-2\cdot AC\cdot CM\cdot\cos ACB
\\\
1^2=(2CM)^2+CM^2-2\cdot 2CM\cdot CM\cdot0.8
\\\
1=4CM^2+CM^2-3.2CM^2
\\\
1=1.8CM^2
\\\
CM^2= \frac{1}{1.8} = \frac{5}{9} 
\\\
CM= \frac{ \sqrt{5} }{3}
Следовательно стороны в два раза больше: AC=BC= \frac{2 \sqrt{5} }{3}
Тогда площадь треугольника найдем как половину произведения двух его сторон на синус угла между ними:
S= \frac{1}{2} \cdot AC\cdot BC\cdot \sinACB
\\\
S= \frac{1}{2} \cdot AC^2\cdot \sqrt{1-\cos ACB} 
\\\
S= \frac{1}{2} \cdot ( \frac{2 \sqrt{5} }{3})^2\cdot \sqrt{1-0.8}=\frac{1}{2} \cdot \frac{4\cdot5 }{9} \cdot \frac{3}{5} = \frac{2}{3}
ответ: 2/3
4,4(4 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ