Так как пирамида правильная четырехугольная, то основания - квадраты. Меньшее из них имеет сторону, равную 2 (по условию), и диагональ его равна "2 корня из 2". Большее основание имеет сторону 10 (по условию) и диагональ "10 корней из 2".
Вершины меньшего основания проецируются на диагонали большего. Величина отрезка, соединяющего вуершину большего основания с точкой, являющейся проекцией вершины меньшего основания на большее, равен ("10 корней из двух" - 2 корня из двух")/2 = "4 корня из 2".
Высота усеченной пирамиды равна 7 (по условию. Тогда квадрат бокового ребра будет равен (согласно теореме Пифагора) "4 корня из 2" + 7^2 = 32 + 49 = 81, , а боковое ребро корню из 81, т.е. 9.
ответ: 9
1см
Объяснение:
Точка N может лежать по одну сторону от плоскости β с точкой М или по другую. Если N лежит по другую сторону, то невозможно выполнить условия MN = 6 см и при этом OM = 9 см. Поэтому рассматриваем только случай, когда M и N находятся по одну сторону от плоскости β.
В этом случае расстояние от M до плоскости (определяется перпендикуляром, опущенным на эту плоскость) равно PM=3см. А расстояние от N до плоскости - QN.
Рассмотрим тр-ки MPO и NQO. Они подобны (2 угла прямые, а ещё один угол MOP общий). Значит PM/QN=OM/ON. ON=9-6=3
QN=PM*ON/OM=3*3/9=1