Объяснение:
а). х - один із катетів, звідси інший - х+3, звідси гіпотенуза становить 33-2х.
За т. Піфагора: x^2+x^2+6x+9=1089-132x+4x^2
-2х^2+138x-1080=0
x^2-69x+540=0
x=60 - не задовільняе задачу. х=9 (см). - один із катетів.
Звідси гипотенуза становить: 33-18=15 (см.)
б). Нехай один катет становить х см, а інший - у см.
Звідси за властивістю бісектриси і теореми Піфагора маємо систему рівнянь:
35^2=x^2+y^2
20/x=15/y
x=20y/15=4y/3
1225=16y^2/9+y^2
25y^2/9=1225
y=корінь із 1225*9/25=35*3/5=7*3=21 (см.)- один із катетів.
х=4*21/3=4*7=28 (см.) - інший катет.
3√29 cм ≈ 16,16 см
Объяснение:
1) Находим высоту.
Так ка площадь треугольника равна половине произведения основания на высоту, то:
90 = (12 · H) : 2
Н = 180 : 12 = 15 см
2) В равнобедренном треугольнике высота, опущенная на основание, является его медианой, то есть делит основание пополам.
Это значит, что в прямоугольном треугольнике, образованном боковой стороной, высотой к основанию и половиной нижнего основания, боковая сторона АВ является гипотенузой, которую можно найти по теореме Пифагора:
АВ = √(6² + 15²) = √(36 + 225) = √261 = √(9 · 29) = 3√29 cм ≈ 3· 5,385 ≈ 16,16 см
ответ: боковая сторона равна 3√29 cм ≈ 16,16 см