Пусть данный ΔАВС, ∟A = 60 °, ∟B = 70 °, АВ = 2 см, AD = 1 см.
Найдем углы ΔBDC.
В ΔABD проведем медиану DK.
АК = КВ = 1 / 2АВ = 2: 2 = 1 см.
Рассмотрим ΔAKD - piвнобедрений (AD = АК = 1 см),
Если ∟A = 60 °, то ΔAKD - piвносторонний.
Итак, AD = АК = KD, ∟А = ∟AКD = ∟KDA = 60 °.
∟ВКD i ∟AKD - смежные, тогда ∟BKD + ∟AKD = 180 °.
∟BKD = 180 ° - 60 ° = 120 °.
ΔBKD - равнобедренный (KB = KD = 1 см), тогда
∟KBD = ∟KDB = (180 ° - 120 °): 2 = 30 °.
Рассмотрим ΔАВС:
∟A + ∟B + ∟C = 180 °. ∟C = 180 ° - (60 ° + 70 °); ∟C = 50 °.
∟B = ∟KBD + ∟DBC; ∟DBC = 70 ° - 30 ° = 40 °.
Рассмотрим ΔBDC:
∟DBC + ∟C + ∟BDC = 180 °.
40 ° + 50 ° + ∟BDC = 180 °. ∟BDC = 180 ° - 90 ° = 90 °.
Biдповидь: ∟BDC = 90 °; ∟DBC = 40 °; ∟C = 50 °
Объяснение:
Пусть <А = х, тогда
<B=90-<A=90-x.
Треугольники КАС и МВС равнобедренные по условию. Значит, углы при их основаниях КС и МС равны. <CKA=<KCA=<1, <CMB=<MCB=<2
Выразим, чему равны углы 3 и 4 в этих треуг-ах:
<3=180-<A=180-x
<4=180-<B=180-(90-x)=90+x
Выразим углы 1 и 2, зная, что сумма углов треугольника равна 180°:
<1=(180-<3):2=(180-(180-x)):2=x:2
<2=(180-<4):2=(180-(90+x)):2=(90-x):2
<KCM=<1+90+<2
<KCM=x:2 + 90 + (90-x):2 = 135°