Две прямые, параллельные третьей, параллельны. Это свойство называется транзитивностью параллельности прямых. Доказательство Пусть прямые a и b одновременно параллельны прямой c. Допустим, что a не параллельна b, тогда прямая a пересекается с прямой b в некоторой точке A, не лежащей на прямой c по условию. Следовательно, мы имеем две прямые a и b, проходящие через точку A, не лежащую на данной прямой c, и одновременно параллельные ей. Теорема доказана. Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну.
1. Если соединить центр вписанной окружности с вершинами, то треугольник "разобьется" на три, и в каждом роль высоты будет играть радиус в точку касания. Отсюда сразу следует нужная формула S = pr; p - полупериметр. Полезно запомнить её именно в этом виде. Важно и то, что такая формула справедлива не только для треугольника, но и для любого выпуклого многоугольника, в который можно вписать окружность. 2. Высота к стороне a равна b*sin(C), откуда S = a*b*sin(C)/2; при этом по теореме синусов c = 2*R*sin(C); или sin(C) = c/(2*R); откуда S = a*b*c/4R чтд.
Рассмотрим треугольник АВС
Угол А =90-40=50
Угол ОАС=50:2=25(т.к. биссектриса)