1) 20 2) 70
Объяснение:
1. Для решения будем использовать только теорему Пифагора:
1) ΔАВС:
AC² + BC² = AB²
BC² = AB² - AC²
2) ΔAHC:
AH² + CH² = AC²
CH² = AC² - AH²
3) ΔHBC:
CH² + BH² = BC²
CH² = BC² - BH²
4) Из действия 2 и действия 3 составим уравнения:
CH² = AC² - AH² и CH² = BC² - BH², а значит:
AC² - AH² = BC² - BH²
5) Из действия 1 известно, что BC² = AB² - AC², а значит:
AC² - AH² = (AB² - AC²) - BH²
Перенесём AC² из правой части в левую, а AH² из левой части в правую:
AC² - AH² = AB² - AC² - BH²
AC² + AC² = AB² - BH² + AH²
2AC² = AB² - BH² + AH²
AC² = (AB² - BH² + AH²) ÷ 2
6) AB = AH + BH = 2 + 8 = 10
Решим уравнение:
AC² = (AB² - BH² + AH²) ÷ 2
AC² = (10² - 8² + 2²) ÷ 2
AC² = (100 - 64 + 4) ÷ 2
AC² = 40 ÷ 2
AC² = 20
ответ: AC² = 20
2. Здесь тоже будем использовать теорему Пифагора:
1) ΔACD:
AD² + CD² = AC²
AD² = AC² - CD²
2) ΔAHD:
AH² + HD² = AD²
HD² = AD² - AH²
3) ΔHCD:
HD² + HC² = CD²
HD² = CD² - HC²
4) Из действия 2 и действия 3 составим уравнения:
HD² = AD² - AH² и HD² = CD² - HC², а значит:
AD² - AH² = CD² - HC²
5) Из действия 1 известно, что AD² = AC² - CD², а значит:
AC² - CD² - AH² = CD² - HC²
Перенесём HC² из правой части в левую, а CD² из левой части в правую:
AC² - AH² + HC² = CD² + CD²
AC² - AH² + HC² = 2CD²
CD² = (AC² - AH² + HC²) ÷ 2
6) AC = AH + HC = 9 + 16 = 25
Решим уравнение:
CD² = (AC² - AH² + HC²) ÷ 2
CD² = (25² - 9² + 16²) ÷ 2
CD² = (625 - 81 + 256) ÷ 2
CD² = 400
CD = √400 = 20
7) Из действия 1 известно, что AD² = AC² - CD², а значит:
AD² = 25² - 400
AD² = 625 - 400
AD² = 225
AD = √225 = 15
8) AD = BC, a CD = AB поскольку ABCD - это прямоугольник. Значит:
Периметр ABCD = AB + BC + CD + AD
P ABCD = 20 + 15 + 20 + 15 = 70
ответ: P ABCD = 70
1. Утрержднние, справедливость которого устанавливается путем рассуждений.
2. Сумма длин сторон треугольника.
3. Отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
4. Отрезок, соединяющий центр с какой-либо точкой окружности.
5. Часть плоскости, ограниченная окружностью.
6. Равные стороны равнобедренного треугольника.
7. Инструмент, используемый для построения окружностей.
8. Геометрическая фигура, состоящая из всех точек, расположенных на заданном расстоянии от данной точки.
9. Отрезок, проведенный под прямым углом к прямой.
10. Третья, не равная сторона равнобедренного треугольника.
11. Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны
Контрольное слово по вертикали - название изученной главы.