Если из точки вне окружности к ней проведены касательная и секущая, то квадрат отрезка касательной от этой точки до точки касания равен произведению длин отрезков секущей от этой точки до точек ее пересечения с окружностью. чертеж: нарийсуй окружность, потом, например, слева от окр. точку a, от нее касательную (точку пересеч обозначь b), и из точки a секущую (точки пересечения с окр. обозначь (слева направо) c и d). подпиши над ab: 10-(x+4); над ac: x; cd: x+4; ad: 2x+4. решение: составим уравнение: (10-(x+4))^2=x*(2x+4) (6-x)^2=2x^2+4x; 36-12x+x^2-2x^2-4x=0; x^2+16x-36=0; d=256-4*(-36)=400; корень из d = 20; x = (-16+20)/2=2; 10-(x+4)=6-x=4. ответ: длина касательной 4 см.
Пусть этот треугольник будет АВС. Медианы треугольника точкой пересечения О делятся в отношении 2:1, считая от вершины. Тогда основание и части медиан, идущие от вершин при основании, образуют треугольник АОС со сторонами АС=26, АО=39:3*2 =26, и СО= 30:3*2=20. По формуле Герона площадь треугольника АОС будет 240 ( проверьте). Медианы делят треугольник на равновеликие треугольники. Если из В провести третью медиану, то треугольник будет разделен на 6 равных по площади треугольника. Треугольник АОС равен 1/3 площади исходного треугольника. Площадь ∆ АВС равна S=240*3=720 (ед. площади)