Противоположные стороны попарно равны, четырехугольник является параллелограммом, значит, точка P является серединой отрезка CB. Поэтому координаты точки P вычисляются следующим образом:
ответ: 4.
Хоть это и запрещенно, я думаю, но я могу тебе скинуть ссылку с подробным ответом, иначе я не знаю как писать корень на клавиатуре:
Пусть стороны АВ и ВС треугольника соответственно равны 1 и √15 а его медиана ВМ равна 2.На продолжении медианы BM за точку M отложим отрезок MD, равный BM. Из равенства треугольников ABM и CDM (по двум сторонам и углу между ними) следует равенство площадей треугольников ABC и BCD. В треугольнике BCD известно, что ВС=√15; ВD=2ВМ = 2*2=4 ; DС=АВ=1 по формуле герона р=(√15+4+1)/2=(√15+5)/2 s=√(p(p-BC)(p-BD)(p-DC))=√((√15+5)/2)((√15+5)/2-√15)((√15+5)/2-4)((√15+5)/2-1)= √((√15+5)/2)((-√15+5)/2)((√15-3)/2)((√15+3)/2)=√(((√15+5)(5-√15)(√15-3)(√15+3))/16) =√(((25-15)(15-9))/16)=√60/√16=2√15/4 2*3.87/4=1.94
Решение: S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD). , где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD. . Аналогично, , где НN - высота, проведенная к стороне СD. Получаем: Площадь полной поверхности равна сумме площади боковой поверхности и площади основания: ответ: 384см²; 564см²
Противоположные стороны попарно равны, четырехугольник является параллелограммом, значит, точка P является серединой отрезка CB. Поэтому координаты точки P вычисляются следующим образом:
ответ: 4.
Хоть это и запрещенно, я думаю, но я могу тебе скинуть ссылку с подробным ответом, иначе я не знаю как писать корень на клавиатуре:
Лови https://ege.sdamgia.ru/formula/svg/9a/9aa0b9387b7018b4b0b1226b0ac5149b.svg