сумма углов выпуклого четырехугольника равен 360°( это по формуле 180(n-2). n-это количество углов, в нашем случае количество углов равен 4, т.к четырехугольник. получает 180(4-2)=180*2=360°)
2:3:4:9 это все части. цифра 9 самая большая, значит это самый большой угол четырехугольника так как он состоит из 9 частей
но чтобы найти 9 частей нам сначала нужно найти 1 часть, для этого составим уравнение
пусть 1 часть это х, тогда 2 части это 2х, 3 части это 3х, 4 части это 4х , а 9 частей это 9х. их сумма равна 360°
2х+3х+4х+9х=360
18х=360
х= 20 это одна часть
самый большой угол состоит из 9 частей поэтому это число нужно умножить на 9
20*9= 180°---большой угол
ABCDEF и A₁B₁C₁D₁E₁F₁ основании усеченной пирамиды , а O и O₁
R =AO=BO=CO=DO=EO =FO .
R₁ =A₁O₁=B₁O₁=C₁O₁=D₁O₁=E₁O₁ =F₁O₁ .
Рассмотрим четырехугольник (прямоугольная трапеция) AA₁O₁O и
проведем A₁H ⊥ AO ( H ∈ AO) .
AH =R - R₁ =12 см -8 см =4 см
AH =AA₁/2 (катет против угла 30° : ∠AA₁H =90° -∠A₁AH =90° -60° =30°) ⇒ AA₁=2AH =8 см. AA₁B₁B равнобедренная трапеция известно AA₁=BB₁= A₁B₁ =8 см , AB =12 см . Высота A₁M этой трапеции и есть апофема.
A₁M ⊥ AB ,.B₁N ⊥ AB , AM=BN =(AB -A₁B₁)/2 =(12 см -8 см)/2 =2 см.
Из ΔAA₁M :
h =A₁M =√(AA₁² - AM²) =√(8² -2²) =√(64 - 4) =√60 =2√15 (см).