Так как PS=RS, то треугольник PSR с основанием PR боковыми сторонами PS и RS является равнобедренным. Следовательно углы пр основании равны, то есть углы ∠SPR и ∠SRP равны. ==> ∠SPR = ∠SRP= 1,5*∠PSR Сумма углов в треугольнике равна 180°. Тогда ∠SPR + ∠SRP + ∠PSR=180° Подставляем в выражение известные нам значения: (1,5*∠PSR)+(1,5*∠PSR)+∠PSR =180° Упрощаем: 4 * ∠PSR= 180° ∠PSR = 45° Находим углы при основании, то есть ∠SPR и ∠SRP, зная что оба угла равны 1,5*∠PSR ∠SPR = ∠SRP= 1,5 * 45°=67,5° Делаем проверку, того что все углы в треугольнике в сумме дают 180° 67,5° + 67,5° + 45°=180° Всё верно. ответ: ∠SPR = 67,5° , ∠SRP=67,5° , ∠PSR = 45°
Исходя из формулы площади (аb = 42) можно предположить, что а = 7cм, b = 6см; 7*6 = 42(кв.см) Определим периметр 2(6 + 7) = 2*13 = 26(см) - условие соблюдено. ответ: 6см и 7см - стороны прямоугольника
Проверим, не подойдут ли другие значения? Допустим , стороны равны 21см и 2см. S = 21*2=42(кв.см) Р = 2(21+2)=46 - не подходит.
Стороны равны 14см и 3см. S = 14 * 3 = 42(кв.см) Р= 2(14+3) = 34(см) - не подходит
Следовательно углы пр основании равны, то есть углы ∠SPR и ∠SRP равны. ==> ∠SPR = ∠SRP= 1,5*∠PSR
Сумма углов в треугольнике равна 180°. Тогда ∠SPR + ∠SRP + ∠PSR=180°
Подставляем в выражение известные нам значения:
(1,5*∠PSR)+(1,5*∠PSR)+∠PSR =180°
Упрощаем:
4 * ∠PSR= 180°
∠PSR = 45°
Находим углы при основании, то есть ∠SPR и ∠SRP, зная что оба угла равны 1,5*∠PSR
∠SPR = ∠SRP= 1,5 * 45°=67,5°
Делаем проверку, того что все углы в треугольнике в сумме дают 180°
67,5° + 67,5° + 45°=180°
Всё верно.
ответ: ∠SPR = 67,5° , ∠SRP=67,5° , ∠PSR = 45°