Исследуемый четырехугольник - трапеция, подобная данной. Площади подобных фигур относятся друг к другу как квадраты их линейных размеров.
Высота данной трапеции равна sqrt[((24 - 12)/2)^2 + 10^2] = 8.
Площадь данной трапеции равна (12 + 24)*8/2 = 144.
Радиусы вписанных окружностей равны 1, в высоте их вмещается два. Следовательно, высота искомой трапеции равна 8 - 1 - 1 = 6. Высоты этих трапеций относятся как 6/8 = 3/4. Значит, площади трапеций будут относиться друг к другу как 9/16.
И площадь искомого четырехугольника будет равна 144*9/16 = 81.
ответ: 81.
Гипотенуза равна корень из (4+16)=2* sqrt(5). Здесь sqrt - квадратный корень.
Острые углы обозначим а ( тот что напротив катета 2) и b
sin(a)=2/(2sqrt(5))=sqrt(5)/5 sin(b)=4/(2sqrt(5))=2sqrt(5)/5
cos(a)=sin(b)=2sqrt(5)/5 cos(b)=sin(a)=sqrt(5)/5
tg(a)=sin(a)/cos(a)=0,5 tg(b)=1/tg(a)=2
ctg(a)=tg(b)=2 ctg(b)=tg(a)=0,5