Углы одного треугольника относятся как 3: 5: 7, а во втором один из углов на 24 градуса больше второго и на 24 градуса меньше 3 угла. Докажите, что треугольники подобны. Пусть углы треугольника 3х, 5х, 7х. Тогда сумма углов треугольника 3х+5х+7х = 15х градусов, что равно 180° Составляем уравнение 15х = 180° ⇒ х=12° Значит углы треугольника 3х=3·12=36° 5х = 5·12 = 60° 7х = 7·12 = 84°
Один из углов второго треугольника на 24 ° больше второго угла, значит 60+24°= 84° и угол на 24° меньше третьего - угол в 60°=84°-24° Значит два угла второго треугольника 84° и 60°, а третий угол 180° - 84° - 60°= 36° углы второго треугольника 84°; 60° ; 36° Треугольники подобны по трём углам.
Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.
Точка А (0;-3) при повороті на кут 90 градусів за годинниковою стрілкою переходить в точку А( 3;0)