Пусть d, e и f - точки касания вписанной окружности со сторонами треугольника авс: ас, ав и вс соответственно.нам дано: ав=30см, вf=14см, fc=12см.заметим, что ве=вf=14см, dc=fc=12см, а ае=аd как касательные, проведенные из одной точки к окружности.тогда ае=ав-ве=30-14=16см, значит аd=16см. dc=fc=12см. значит ас=ad+dc=16+12=28см. полупериметр треугольника равен: р=(30+26+28): 2=42см.есть формула для вписанной в треугольник окружности: r=√[(p-a)(p-b)(p-c)/р], где р - полупериметр, а, b, c - стороны треугольника. в нашем случае: r=√(12*16*14/42)=√64=8см.ответ: r=8см.
А)r=ab/2=12 см б) проведем высоту cl , из прямоугольного треугольника cld ld²=cd²-ab²=25²-24²=49 ld=7 если в четырехугольник вписана окружность,то сумма его противоположных сторон равна . ab+cd=bc+ad bc+ad=49 ad=bc+ld bc+bc+ld=49 2bc+7=49 bc=21 ad=49-21=28 в)проведем радиус qf ,точка f лежит на прямой cd qf является высотой т. к. касательная к окружности перпендикулярна радиусу. отметим на прямых bc и ad точки к и м ,так что бы км являлось диаметром и была параллельна ab,далее из свойств прямоугольной трапеции ,В которую вписана окружность kc=cf=bc-r=21-12=9 ed=ef=ad-r=28-12=16 qf является высотой треугольника cdq, в прямоугольном треугольнике квадрат высоты равен произведению отрезков ,на которые высота делит гипотенузу qf²=16*9 12²=16*9 144=144 следовательно треугольник cdq прямоугольный