25 1. чему равен периметр осевого сечения цилиндра, если радиус основания цилиндра равен 4 см, а высота цилиндра равна 6 см? сделайте чертёж цилиндра и его осевое сечение 2. осевым сечением конуса является равносторонний треугольник. найдите площадь боковой и полной поверхности конуса, если радиус его основания - 6 см. 3. длина окружности основания цилиндра 2п см, а диагональ осевого сечения - 10 см. вычислите объём цилиндра. 4. шар пересечён плоскостью так, что в сечении получился круг радиусом 6 дм. вычислите расстояние от центра шара до плоскости сечения, если извенстно, что площадь поверхности шара равна 256п дм^2 p.s решите хоть 1-2 , а лучше все
Объяснение:
Задание А
ΔАВС, ВD-биссектриса, ∠А=50° ,∠В=60°.
1)По т. о сумме углов треугольника ∠С=180°-50°-60°=70°.
Т.к. ВD-биссектриса, то ∠DВС=60°:2=30°
ΔВDС ,∠ВDС=180°-30°-70°=80°
2)В треугольнике ΔВDС против большего угла лежит большая сторона :70°>30°,∠С>∠ВDС и значит ВD>DС.
Задание В
1)ΔNMK , по т.о сумме углов треугольника ∠N=180°-75°-35°=70°.
2)NО-биссектриса, значит ∠ОNК=70°:2=35°. В ΔОNК два угла по 35°, значит он равнобедренный и ОК=NО.
3)ΔОМN , срвним углы 75°>30°, т.е ∠М>∠МNО и значит NО>МО. Но NО=ОК, значит ОК>МО.
Задание С
1)ΔАВС, ∠А=90°-70°=20° по св. острых углов прямоугольного треугольника.
2)DC=BC, значит ΔDCВ-равнобедренный и прямоугольный и ∠СВD=∠DВC=(180°-90°):2=45°.
Значит ∠DВА=70°-45°=25°
3)∠АDВ=180°-45°=135° по т. о смежных углах
4) В ΔВDC-прямоугольном ∠С=90° самый большой, значит против него лежит большая сторона DВ>DC