Дано: ABCD ромб ; BD =30 ; AC =40 ; AK ⊥ (ABCD) ; AK= 10 .
d( K , CD) = d( K , BC) - ?
Проведем из вершины A высоту ромба : AH ⊥ CD (AH = h) и соединим точка H с точкой K . KH -наклонная , AH ее проекция на плоскости ABCD. По теореме трех перпендикуляров CD ⊥ KH ,т.е. KH есть расстояние от точки K до стороны CD . Из ΔKAH : KH = √(KA² +AH²).
Сторона ромба равно a =√ ( (BD/2)² +(AC/2)² ) = (1/2)*√ ( BD² +AC)² = (1/2)*√ ( 30² +40)² =(1/2)*50=25. S(ABCD) =BD*AC/2 = 30*40/2 = 600. C другой стороны S(ABCD) =a*AH ⇒ 600 =25*AH ⇒AH =24. Окончательно : KH = √(KA² +AH²) = √(10²+24)² =√(100+576) =√676=26.
1. пусть меньший угол х, тогда второй 4х, третий 5х, сумма всех углов равна 180°, отсюда уравнение
х+4х+5х=180;
10х=180; х=18, значит. меньший угол равен 180°, тогда второй угол 4*18°=72° и третий 45*18°=90°
ответ 18°; 72°; 90°
2. сумма всех углов 180°, если один 54°, то на долю двух оставшихся приходится 180°-54°=126°;
1) пусть меньший угол х, тогда х+х+18=126; 2х=126-18; х=108°/2=54° - меньший угол. тогда больший 54°+18°=72°
2)х+8х=126; х=126/9=14; 14° - меньший угол, тогда больший 8*14°=112°
3)2х+7х=126; х=126/9=14, тогда меньший угол 2*14°=28°, а больший 14°*7=
98°
4) х+0.5х=126; х=126°/1.5=84°- больший угол , тогда меньший 0.5*84=42°