Объяснение:
Строим сторону АВ = 14 м, взяв для простоты 1 мм за 1 м. С вершинами в точках А и В, со стороной АВ строим углы в 120°. Откладываем на полученных сторонах отрезки АС = BD = 14 м и строим с вершинами в точках С и D углы 120°. Откладываем на полученных сторонах СМ = DP = 14 м, соединяем точки М и Р. Шестиугольник ABDPMC есть план Семиглавой башни. Этот многоугольник называется правильным, так как у него стороны и углы равны. Точка О есть центр правильного многоугольника. Из него сторона АВ видна под углом AOB.
ABC - равнобедренный треугольник, AC = 8, P_ABC = 18, V_тела вращения = V_цилиндра с высотой равной основанию треугольника и радиусом равным высоте треугольника - 2*V_конуса с радиусом основания равным высоте треугольника и высотой равным половине основания треугольника
V_цилиндра = pi*r^2*h
Радиус найдём воспользовавшись теоремой Пифагора и тем, что наш треугольник равнобедренный. AB = BC = (P_ABC - AC)/2 = (18-8)/2 = 5, r_основания цилиндра (=высоте треугольника) = V(AB^2+(AC/2)^2) = V25 + 16 = V41 (Корень), (высоту искали из прямоугольного треугольника ABC', C' делит AC пополам)
V_цилиндра = pi*r^2*h= pi * 41 * 8 =328pi
V_конуса = 1/3*pi*(r_конуса)^2*h_конуса = 1/3*pi*41*4 =123/3*pi
V_тела вращения = V_цилиндра - 2*V_конуса = 328pi - 246/3*pi = (328-82)pi = 246pi