Дано:
Трапеция ABCD, угол D равен 60 градусов, диагональ BD делит этот угол пополам. AD = 14 см.
Углы ADB = BDC = 60 / 2 = 30 градусов.
Угол DBC = ADB = 30 градусов (как углы при параллельных прямых)
Треугольник BCD равнобедренный с основанием BD, следовательно, BC = CD.
Угол В трапеции равен 90 + 30 = 120 градусов, угол А равен 180 - 120 = 60 градусов.
Трапеция равнобедренная, AB = BC = CD.
AD = 2AB по законам прямоугольного треугольника.
AB + BC + CD + AD = AB + AB + AB + 2AB = 5AB = 2,5AD = 2,5 * 14 = 35 см.
ответ: 35 см.
А также площадь прямоугольника равна произведению катетов. Обозначим меньший катет буквой х, тогда больший будет х*tg(x) = x*корень(3).
Итого, имеем площадь прямоугольника х*х*корень(3) = 1024*корень(3).
Корень(3) сокращаем, остаётся х*х = 1024.
Отсюда х = корень(1024) = 32.
Такой получился ответ - меньший катет = 32.