1. В остроугольном треугольнике ABC проведена высота BH, . Найдите угол ABH . ответ дайте в градусах
2. Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Найдите угол ABC, если угол BAC равен 17°. ответ дайте в градусах.
3. В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 35. Найдите площадь четырёхугольника ABMN.
5. Какие из следующих утверждений верны?
1) Если противоположные углы выпуклого четырехугольника равны, то этот четырехугольник — параллелограмм.
2) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.
3) Сумма двух противоположных углов четырехугольника не превосходит 180°.
4) Если основания трапеции равны 4 и 6, то средняя линия этой трапеции равна 10.
6. Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB = 14, DC = 42, AC=52. (С ПОЛНЫМ РЕШЕНИЕМ)
7. В параллелограмме KLMN точка B — середина стороны LM. Известно, что BK = BN. Докажите, что данный параллелограмм — прямоугольник. (С ПОЛНЫМ РЕШЕНИЕМ)
8. Четырёхугольник ABCD со сторонами AB = 11 и CD = 41 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём Найдите радиус окружности, описанной около этого четырёхугольника. (С ПОЛНЫМ РЕШЕНИЕМ)
а) "Всякий ромб является квадратом" - нет, это неверно. Квадрат - это тоже ромб, но все его углы прямые. Но также есть такие ромбы, у которых есть два острых угла и два тупых угла. Поэтому утверждения "а" неверно.
б) "Если диагонали четырёхугольника взаимно перпендикулярны, то он является ромбом" - нет, это неверно. Диагонали могут быть взаимно перпендикулярными, например, и у трапеции (трапеция - четырёхугольник с двумя параллельными сторонами) Но это не значит, что трапеция - ромб. Поэтому утверждения "б" неверно.
в) "Существует квадрат, который не является ромбом" - нет, это неверно. Квадрат - это всегда ромб, так как все его стороны равны между собой. Поэтому утверждения "в" неверно.
г) "Если диагонали параллелограмма не равны, то он не прямоугольник" - да, это верно. Так как диагонали прямоугольника всегда равны, не иначе. Поэтому утверждения "г" верно.