1) Прямоугольный параллелепипед описан около цилиндра. радиус основания которого равен 4. а высота 5. Найти объем параллелепипеда
Все грани прямоугольного параллелепипеда -прямоугольники. Основания вписанного цилиндра - окружности, вписанные в основания параллелепипеда, а его высота является и высотой параллелепипеда.
Если в прямоугольник вписана окружность - этот прямоугольник - квадрат.
Стороны основания параллелепипеда равны диаметру оснований цилиндра.
а=2r=8
Объем прямоугольного параллелепипеда равен произведению его трех измерений.
V=S*H=8*8*5=320 (единиц объема)
----------------------
2) Радиус основания конуса равен 15, расстояние от центра до образующей равно 12. Найти площадь боковой поверхности конуса.
формула площади боковой поверхности конуса
S=πRL
Расстояние от центра основания до образующей - в данном случае высота прямоугольного треугольника ВОС, образованного высотой ВО конуса, радиусом ОС и образующей ВС (она же гипотенуза треугольника ОВС)
∆ ОНС - египетский ( отношение катета и гипотенузц 3:5). Значит, НС=9 ( можно найти по т.Пифагора)
ОС - катет ∆ ОВС.
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и его проекцией на гипотенузу.
. ОС²=ВС*НС
225=ВС*9
ВС=225:9=25
S=π*15*25=375 (ед. площади)
-----------------------------
В ΔABC: AC=BC=13, sin ∠A=12/13. Hайти АВ
СН- высота ∆ АВС
АВ=2 АН
АН=АС*cos A
cos A=√(1-(12/13)² )=5/13
AH=5
АВ=5*2=10
1) Б
2) Б
3) А
4)В
5) Г
6) А
7)Пусть боковая сторона = 5х, тогда основание =2х
Так как треугольник равнобедренный, значит вторая боковая сторона тоже = 5х
Отсюда периметр Р=5х + 2х + 5х=48
Решаем уравнение 5х + 2х + 5х = 48
12х = 48
х= 4
Основание = 2х = 2*4 = 8
Боковая сторона = 5х = 5*4 = 20
8)Т.к. ΔADC = ΔA1D1C1, то АС = А1С1, AD = А1D1, ∠A = А1 АВ = AD + DB, A1B1 = A1D1 + D1B1, т.к. АВ = А1В1, DB = D1B1, то AD = A1D1
В ΔАВС и ΔА1В1С1:
∠А = ∠А1 АС = А1С1, т.к. ΔADC = ΔA1D1C1, АВ = А1В1, следовательно, ΔАВС = ΔА1В1С1 по 1-му признаку равенства треугольников.