М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
astafievaolga20
astafievaolga20
05.03.2020 11:53 •  Геометрия

очень мало времени осталось. Надо решить 4, 5, 6 (если хоть одну решите кидайте заранее

👇
Ответ:
Лера565009
Лера565009
05.03.2020

Блн я бы хотел но почерк не понятный жаль

4,8(44 оценок)
Открыть все ответы
Ответ:
kozarmarjna15
kozarmarjna15
05.03.2020
Из нового синтетического материала изготовили брусок в форме прямоугольного параллелепипеда, полная поверхность которого равна 192 см2.

Брусок был подвергнут давлению по всем граням таким образом, что форма прямоугольного параллелепипеда сохранилась, но каждое ребро уменьшилось на 1 см.

Сравнивая два бруска, имеющих форму прямоугольного параллелепипеда, установили, что длина, ширина и высота второго бруска соответственно на 1 см больше, чем у первого бруска, а объем и полная поверхность второго бруска соответственно на 18 см3 и 30 см2 больше, чем у первого.

Одно из боковых ребер наклонного параллелепипеда составляет равные острые углы с прилежащими к нему сторонами нижнего основания.

Через диагональ нижнего основания произвольного параллелепипеда и середину не пересекающего ее бокового ребра проведена плоскость.

Как относятся объемы образовавшихся при этом частей параллелепипеда?

Дан параллелепипед ^SCDA^jCjDj.

Доказать, что в прямоугольном параллелепипеде ABCDA1B1C1D1 сумма.

1) Пусть Xf, хг и х3 — длины ребер, выходящих из одной вершины некоторого прямоугольного параллелепипеда.

2) Найти длины ребер такого прямоугольного параллелепипеда, у которого сумма всех ребер, полная поверхность и объем соответственно равны 48 см, 88 см2 и 48 см9.

Длины ребер, исходящих из общей вершины некоторого прямоугольного параллелепипеда, являются корнями уравнения а*3+ ~\-bx*-\-cx-}-d=Q.

Определить длину диагонали этого параллелепипеда.

Найти площадь поверхности сферы, описанной около прямоугольного параллелепипеда, три измерения которого являются корнями уравнения Х3+шг2+йлг+с=0.

] Доказать, что сумма квадратов длин всех ребер параллелепипеда равна сумме квадратов длин всех его четырех диагоналей.

Доказать, что из всех прямоугольных параллелепипедов С данной суммой всех ребер наибольший объем имеет куб.

Диагональ прямоугольного параллелепипеда рагаа 13 см, _а диагонали его боковых граней равны 4У10 см и 3]/17 см.

В прямом параллелепипеде стороны основания равны а и Ь, острый угол между ними содержит 60°.

Большая диагональ основания конгруэнтна меньшей диагонали параллелепипеда.

Основанием прямого параллелепипеда служит ромб.

В основании прямого параллелепипеда лежит параллелограмм со сторонами 1 см и 4 см и острым углом 60°.

Основанием параллелепипеда служит квадрат.

Определить полную поверхность этого параллелепипеда.

Определить объем прямоугольного параллелепипеда, диагональ которого равна / и составляет о одной гранью угол 30°, а с другой 45°.

Основанием прямого параллелепипеда служит ромб, площадь которого равна Q.

Стороны основания прямоугольного параллелепипеда равны а и Ь.

Стороны основания прямоугольного параллелепипеда равны а и Ь.

Определить объем прямоугольного параллелепипеда, если его диагональ равна d, а длины ребер относятся, как т: п: р.

В прямом параллелепипеде стороны основания равны а и Ь и образуют угол 30°.

Стороны основания прямоугольного параллелепипеда относятся, как т: п, а диагональное сечение представляет собой квадрат с площадью, равной Q.

Измерения прямоугольного параллелепипеда равны 2 см, 3 см и 6 см.

Из медной болванки, имеющей форму пря--моугольного параллелепипеда размером 80 смХ20 смХ Х5 см, прокатывается лист толщиной 1 мм.

В наклонном параллелепипеде проекция бокового ребра на плоскость основания равна 5 дм, а высота равна 12 дм.

Основанием параллелепипеда служит ромб со стороной а и острым углом 30
4,4(40 оценок)
Ответ:
sayferbil
sayferbil
05.03.2020

2-Звено ломаной-это отрезки из которых ломаная состоит. Вершина ломаной-это угол соединяющий несколько звеньев. Длина ломаной-это длины всех её звеньев сразу. Ломаная линия – это геометрическая фигура, состоящая из последовательно соединённых отрезков, в которой конец одного отрезка является началом следующего.

3-Многоуго́льник - это геометрическая фигура, определяется как замкнутая ломаная. Вершины ломаной называются вершинами многоугольника, а отрезки - сторонами многоугольника. Периметр многоугольника - это сумма длин всех многоугольника. Диагональю многоугольника называется отрезок, соединяющий его несоседние вершины.

4-Сумма углов выпуклого четырёхугольника равна 360 градусам.» — верно, по теореме о сумме углов выпуклого многоугольника сумма углов n-угольника равна 180°(n − 2). Следовательно, сумма углов выпуклого четырёхугольника равна 360 градусам

5-Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны. Признаки параллелограмма: ... Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.

6-Трапеция Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие непараллельны. Параллельные стороны трапеции называются ее основаниями, а непараллельные стороны — боковыми сторонами. Отрезок, соединяющий середины боковых сторон, называется средней линией.

7-,Равнобедренной (равнобокой) трапецией называется трапеция у которой боковые стороны равны. Прямоугольной трапецией называется трапеция у которой два угла при одной из боковых сторон равны 90 градусов.-Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции:

Высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой – полуразности оснований:

Углы при любом основании равны .

8- Правильный четырехугольник. Свойства - диагонали равны, все углы прямые, диагонали пересекаются под прямым углом и точкой пересечения делятся пополам, являются биссектрисами

9-Четырёхугольник у которого все стороны равны и все углы прямые.

10-Квадрат - прямоугольник, у которого все стороны равны. Прямоугольник является параллелограммом, следовательно и квадрат тоже им является. ... Свойства квадрата: Диагонали квадрата взаимно перпендикулярны, равны, точкой пересечения делятся пополам и делят углы пополам.

если чтото не понятно говори

4,5(10 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ