Величины трёх последовательных углов четырехугольника, вписанного в окружность, относятся как 2:3:7. Найдите градусную меру четвертого угла и длину дуги окружности, на которую опирается меньший угол четырехугольника. Радиус окружности равен 12 см.
У четырёхугольника, вписанного в окружность, сумма противоположных углов равна 180 градусам. x — градусная мера одной части пропорции. Таким образом: 2x+7x=180° 9x=180° x=20° Другая пара углов n — градусная мера четвёртого угла 3x+n=180° 60°+n=180° n=120° Углы четырёхугольника являются вписанными в окружность. Градусная мера дуг, на которые они опираются, в два раза больше (теорема о вписанных углах) Наименьший угол: 2x=40° Дуга, на которую опирается угол в 40°=80° Надо найти, какую часть от всей длины окружности занимает эта дуга: 80°/360°=8/36=2/9 Длина окружности (C) высчитывается по формуле: 2pR P≈3,14 C=12*2*3,14=75,36см Дуга меньшего угла: 75,36*2/9≈16,75 см ответ: 120°; 16,75 см
Если известны стороны! Проведем две медианы к боковым сторонам треугольника. Так как он равнобедренный, медианы эти равны и отсекают от исходного треугольника два меньших, равных между собой. Угол при основании неизвестен, поэтому обозначим его α и его косинус - cosα Выразим медиану одного из образовавшихся треугольников по теореме косинусов. Чтобы найти косинус угла при основании, применим теорему косинусов к данному в условии задачи треугольнику, стороны которого известны. Подставив найденное значение cosα в уравнение медианы, найдем ее длину.
Не сказано какую высоту нужно найти, по этому найдем высоты, проведенные к основанию и к боковой стороне Пусть дан треугольник АВС , СР- высота, проведенная к боковой стороне, АК-высота, проведенная к основанию. Высота,проведенная к основанию: Высота,проведенная к основанию, делит р.б треугольник на два равных прямоугольных треугольника, рассмотрим один из них: ΔСАК : СА - гипотенуза 13 см, СК, АК- катеты СК=СВ/2=24/2=12 см По т. Пифагора найдём катет АК Найдём площадь ΔАВС, чтобы найти высоту СР Также площадь можно найти через высоту СР и боковую сторону,к которой высота проведена, АВ
2x+7x=180°
9x=180°
x=20°
Другая пара углов
n — градусная мера четвёртого угла
3x+n=180°
60°+n=180°
n=120°
Углы четырёхугольника являются вписанными в окружность. Градусная мера дуг, на которые они опираются, в два раза больше (теорема о вписанных углах)
Наименьший угол: 2x=40°
Дуга, на которую опирается угол в 40°=80°
Надо найти, какую часть от всей длины окружности занимает эта дуга: 80°/360°=8/36=2/9
Длина окружности (C) высчитывается по формуле: 2pR
P≈3,14
C=12*2*3,14=75,36см
Дуга меньшего угла: 75,36*2/9≈16,75 см
ответ: 120°; 16,75 см