Пусть m1, m2, m3 – образы точки m при последовательных отражениях. три из четырёх проделанных преобразований (симметрии относительно прямой ab, прямой ac и точки a) не меняют расстояния до точки a. поскольку точка m осталась на месте, то и симметрия относительно bc не изменила расстояния до точки a. значит одна из точек mi лежит на прямой bc. последовательные отражения относительно ac и ab есть поворот на 2 ∠ bac, а отражение относительно точки a – поворот на 180 . значит, композиция всех этих преобразований является поворотом точки m на 2 ∠ bac + 180 . так как m осталось неподвижна, то 2 α + 180 делится на 2 π . значит, ∠ bac = 90 .
1. пусть меньший угол х, тогда второй 4х, третий 5х, сумма всех углов равна 180°, отсюда уравнение
х+4х+5х=180;
10х=180; х=18, значит. меньший угол равен 180°, тогда второй угол 4*18°=72° и третий 45*18°=90°
ответ 18°; 72°; 90°
2. сумма всех углов 180°, если один 54°, то на долю двух оставшихся приходится 180°-54°=126°;
1) пусть меньший угол х, тогда х+х+18=126; 2х=126-18; х=108°/2=54° - меньший угол. тогда больший 54°+18°=72°
2)х+8х=126; х=126/9=14; 14° - меньший угол, тогда больший 8*14°=112°
3)2х+7х=126; х=126/9=14, тогда меньший угол 2*14°=28°, а больший 14°*7=
98°
4) х+0.5х=126; х=126°/1.5=84°- больший угол , тогда меньший 0.5*84=42°