Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.
1) Дано: L C=90⁰
cos A =√2/4
tg A-?
tg A = sin A/ cos A
Применим основное тригонометрическое тождество:
sin A=√(1-cos²A)=√(1-(√2/4)²)= √(1-2/16)=√(1-1/8)=√(7/8)
Тогда tg A = √(7/8):(√2/4)= √(7/8)·4/√2=4·√(7/16)=4·¼·√7=√7.
ответ: √7.