90
Объяснение: касательная перпендикулярна радиусу
7 задание.
дано :
треугольник р/б.
Р=20см
АС=4см
найти :
сторону АВ
т.к ВС - высота (угол при прямой D)
и медиана АС=СD
1)4см+4см=8см основание
АВ=ВD, т.к треугольник р/б (равнобедренный)
2)20см-8см=12см сумма равных сторон
3) 12см:2=6см равные стороны
ответ : АВ = 6см
8 задание.
дано :
треугольник р/б
Р=32см
АВ-DC=4см
найти : ВС
тут можно решить уравнением
возьмем DC за х
(х+4)+(х+4)+2х=32
(объясняю:
х+4
чтоб найти DC надо к DC прибавить 4 в результате чего получается АВ
2х
это 2 × х, т.к мы взяли DC за х
х+4+2х это сумма половины основания и одной стороны, по этому дублируем, то есть получается
(х+4)+(х+4)+2х=32
32 это периметр)
решаем уравнение
1) (х+4)+(х+4)+2х=32
2х+8+2х=32
4х=24
х=24:4
х=6 это мы нашли DC
2) DC=AD, т.к DB биссектриса
6+6=12 основание
3) периметр - основание = сумма сторон
Ртреугольника-АС= АВ+ВС
32-12=20 сумма сторон АВ+ВС
4) АВ=ВС
20:2=10 AB и BC
ответ : ВС =10см
Объяснение:1. Измерение отрезков
Две геометрические фигуры (отрезки, углы,
треугольники и др.) считаются равными, если их
можно наложить друг на друга так, чтобы они совпали.
Отрезки равны, если равны их длины.
Если точка лежит на отрезке , то A B C
+ = .
1. На прямой выбраны три точки , и , причём = 3, = 5. Чему может быть равно ?
(Есть разные возможности.)
B Если точка находится между точками и
A B C
3 5
, то это расстояние равно 3+5 = 8. Но возможен и
другой случай, когда находится вне отрезка .
Нарисовав картинку, убеждаемся, что в этом случае
B A C расстояние равно 5 − 3 = 2. C
3 2
2. На прямой выбраны четыре точки , , ,
, причём = 1, = 2, = 4. Чему может
быть равно ? Укажите все возможности.
B Сначала посмотрим, чему может быть равно
расстояние между точками и . Как и в предыдущей задаче, тут есть две возможности (точка
внутри или вне) | и получается либо 3, либо
1. Теперь мы получаем две задачи: в одной из них
= 3 и = 4, в другой | = 1, = 4.
Каждая имеет по два ответа, так что всего ответов
получается четыре: 4+3, 4−3, 4+1 и 4−1. ответ:
расстояние может равняться 1, 3, 5 или 7. C
3. На деревянной линейке отмечены три деле- 0 7 11
ния: 0, 7 и 11 сантиметров. Как отложить с её отрезок в (а) 8 см; (б) 5 см?
B Используя деления 7 и 11, легко отложить 4
сантиметра. Сделав это дважды, получим отрезок
в 8 сантиметров. Отложить 5 сантиметров немного
сложнее: умея откладывать 8 и 7, можно отложить
1 сантиметр. Сделав это 5 раз, получаем
45
Объяснение:
45