Проведём перпендикуляр из точки В на вторую грань, назовём её СВ. Из точки С опустим прямую СА, так что бы точка А была паралельна точке В. Тогда отрезок АВ будет равен 18 см, СА будет гиппотенузой треугольника АВС, а расстояние от точки В до
другой грани это катет ВС (перпендикуляр).
Во первых найдём гиппотенузу.
Так как угол А равен двугранному углу, то есть = 60 грудусов, то угол В будет =30 градусов.
А по определению прямоугольного треугольника следует - катет лежащии против 30 градусов равен половине гиппотенузы.
Катет АВ =18см , а гиппотенуза СА =18×2= 36 см
Далее, теорема Пифагора.
Так как нам известен один катет и гиппотенуза , можем найти другой катет.
ВС^2=СА^2-АВ^2 = 1296 - 324 = 972
ВС = корень из 972, приблизительно 31,17 см
ответ: расстояние от В до другой грани двугранного угла равно приблизительно 31 см
Объяснение:
1)Т.к. две плоскости взаимноперпендикулярны, то образуется прямоугольный треугольник с гипот АВ. А Т.к. Расстояния от точек А и В до линии пересечения плоскостей равны, то это будет равнобедренный прямоугольный тр-к. Следовательно искомые углы-это углы при основании и равны 90/2=45
ответ: 45, 45
2)Пусть у наклонной а будет проекция 7, а у наклонной b проекция 18, тогда b=a+5
По теореме Пифагора искомая высота:
h^2=b^2 - 324=(a+5)^2 - 324
h^2=a^2 - 49
(a+5)^2 - 324=a^2 - 49
После преобразований получим: а=25, тогда
h=sqrt(625 - 49)=24
ответ: 24
3) Пусть катету а прилежит отрезок=15, а катету b отрезок=20
по св-ву бисс.: a/15=b/20 или a=3/4* b
По т. Пифагора гипот. равна: a^2 + b^2=(3/4* b)^2 + b^2=35^2
После преобразований получим b=28, a=21
"расстояние от этой точки до каждой стороны треугольника, если известно, что они одинаковые": подразумевается что точка располагается над центром вписанной окружности. Найдем ее.
S=p*r, r=S/p=294/42=7
p=P/2=(35+28+21)/2=42
S=1/2*a*b=1/2*28*21=294
Расстояние l от точки до сторон вычисляется по т.Пифагора:
l = sqrt(h^2 + r^2)=sqrt(24^2 + 7^2)=25
ответ: 25
1) 1
2) 2
3) 4
4) 2
5) 3
6) 2
7) 4
8) 1
9) 2
10) 2
Объяснение:
1.) Углы (внутренние) выпуклого многоугольника — это углы, образованные соседними сторонами. Число углов многоугольника равно числу сторон и числу вершин. Среди углов невыпуклого многоугольника имеется хотя бы один угол, больший 180°. Теорема 1. Сумма углов выпуклого n-угольника равна (n - 2) 180°. (1)
2) Четырехугольник является параллелограммом, если у него: диагонали пересекаются и точкой пересечения делятся пополам. (2)
3) Равнобедренной (равнобокой) трапецией называется трапеция у которой боковые стороны равны. (4)
4) Прямоугольник — параллелограмм, у которого все углы прямые (равны 90 градусам). (2)
5) Четырёхугольник является ромбом, если у него: диагонали перпендикулярны и точкой пересечения делятся пополам. (3)
6) Квадратом является: ромб, у которого все углы прямые. (2)
7) Всякий прямоугольник является: параллелограммом. (4)
8) Верное утверждение: если в четырехугольнике диагонали равны и точкой пересечения делятся пополам, то этот четырехугольник – прямоугольник. (1)
9) Трапеция, у которой один из углов равен 90º,называется: прямоугольной. (2)
10) Диагонали ромба пересекаются под прямым углом. (2)