М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Сашулябрейк
Сашулябрейк
30.09.2020 22:43 •  Геометрия

Задано точки A (1;4;8) і B (-4;0;3). Знайдіть косинус кута, під яким відрізок AB видно з початку координат.

👇
Открыть все ответы
Ответ:
samirdebilGost
samirdebilGost
30.09.2020
Если двугранные углы при основании равны. То, опустив все четыре апофемы и высоту пирамиды, найдем, что отрезки, соединяющие основание высоты пирамиды с основаниями апофем, равны по длине. Докажем это. Опустив одну апофему и проведя соответствующий отрезок, соединяющий высоту пирамиды и основание апофемы, найдем, что высота - это перпендикуляр, а апофема - это наклонная, причем эта наклонная перпендикулярна соответствующей стороне основания пирамиды, тогда по теореме обратной теореме "о трех перпендикулярах" найдем, что отрезок, соединяющий основание высоты и основание апофемы перпендикулярен стороне основания, и апофема и этот отрезок образуют линейный угол двугранного угла. Но т. к. по условию все двугранные углы равны, то равны и все отрезки, соединяющие основания высоты и апофем (это следует из равенства прямоугольных треугольников, каждый из которых составлен из высоты, апофемы и отрезка, соединяющего их основания). Что мы имеем? Т.к. указанные отрезки равны и перпендикулярны сторонам основания, то отсюда следует, что основание высоты пирамиды - это центр вписанной в основание окружности. Таким образом у нас есть две точки основания:
центр вписанной окружности (он же - основание высоты пирамиды) и точка пересечения диагоналей основания. Нужно теперь доказать, что эти точки не совпадают. По условию, основанием является равнобокая трапеция. Высота этой трапеции - это диаметр вписанной окружности, отсюда можно заключить, что центр вписанной окружности, находится на одинаковом расстоянии от оснований трапеции. Для точки пересечения диагоналей этого сказать нельзя. Пусть ABCD - это данная равнобокая трапеция, являющаяся основанием данной в условии пирамиды. Причем AD - большее основание, BC - меньшее основание трапеции. Пусть т. F - точка пересечения диагоналей. Проведя диагонали трапеции AC и BD. Найдем, что треугольники AFD и CFB подобны по двум углам (накрест лежащие углы при параллельных прямых AD и BC и секущих BD и AC равны). Но коэффициент подобия этих треугольников не равен 1 (k = AD/BC, но AD>BC, поэтому AD/BC>1), то есть эти треугольники не равны, а значит неравны и их высоты, проведенные из т. F, что означает, что т. F не равноудалена от оснований трапеции, в отличии о центра вписанной в трапецию окружности. ЧТД.
4,4(76 оценок)
Ответ:
666Dim
666Dim
30.09.2020
В "классическом" определении вероятность равна отношению числа подходящих событий к общему числу возможный событий. Всего возможный событий 8. 
Это легко сосчитать.
Первая монета может упасть двумя орел или решка), и на каждый их них вторая может упасть тоже двумя Всего для двух монет получается 4 события (можно и перечислить - "орел, орел", "орел, решка", "решка, орел", "решка, решка").
Теперь понятно, что на каждое такое событие ТРЕТЬЯ монета может упасть опять-таки двумя Откуда и получается 8 разных вариантов выпадения трех монет.
А подходящим является только 1 событие - все три монеты упали кверху решкой.
Поэтому классическая вероятность такого события равна 1/8.

Интересно вот что. Этот ответ правильный, если монеты РАЗЛИЧНЫ или бросаются ПОСЛЕДОВАТЕЛЬНО. Если все три монеты абсолютно неразличимы и бросаются одновременно, вероятность может оказаться другой :). В самом деле, в этом случае есть следующие возможные события - "3 орла" "2 орла, 1 решка" "2 решки, 1 орел", "3 решки". Однако эти события неравноправны. Так что ...:)
4,7(17 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ