1) Прямоугольный параллелепипед описан около цилиндра. радиус основания которого равен 4. а высота 5. Найти объем параллелепипеда
Все грани прямоугольного параллелепипеда -прямоугольники. Основания вписанного цилиндра - окружности, вписанные в основания параллелепипеда, а его высота является и высотой параллелепипеда.
Если в прямоугольник вписана окружность - этот прямоугольник - квадрат.
Стороны основания параллелепипеда равны диаметру оснований цилиндра.
а=2r=8
Объем прямоугольного параллелепипеда равен произведению его трех измерений.
V=S*H=8*8*5=320 (единиц объема)
----------------------
2) Радиус основания конуса равен 15, расстояние от центра до образующей равно 12. Найти площадь боковой поверхности конуса.
формула площади боковой поверхности конуса
S=πRL
Расстояние от центра основания до образующей - в данном случае высота прямоугольного треугольника ВОС, образованного высотой ВО конуса, радиусом ОС и образующей ВС (она же гипотенуза треугольника ОВС)
∆ ОНС - египетский ( отношение катета и гипотенузц 3:5). Значит, НС=9 ( можно найти по т.Пифагора)
ОС - катет ∆ ОВС.
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и его проекцией на гипотенузу.
. ОС²=ВС*НС
225=ВС*9
ВС=225:9=25
S=π*15*25=375 (ед. площади)
-----------------------------
В ΔABC: AC=BC=13, sin ∠A=12/13. Hайти АВ
СН- высота ∆ АВС
АВ=2 АН
АН=АС*cos A
cos A=√(1-(12/13)² )=5/13
AH=5
АВ=5*2=10
Задание: написать уравнение прямой ax+by+c=0, все точки которой находятся на равных расстояниях от точек A(5;2) и B(9;8) .
Геометрическое место точек, равноудалённых от точек А и В, это перпендикуляр к середине отрезка АВ.
Находим координаты точки С - середины отрезка АВ.
С = ((5+9)/2; (2+8)/2) = (7; 5).
Теперь находим уравнение прямой АВ.
Вектор АВ = (9-5; 8-2) = (4; 6). Это направляющий вектор прямой АВ.
У перпендикулярного вектора координаты такие, что скалярное произведение его и вектора прямой равно 0.
Значит, направляющий вектор перпендикуляра равен(-6; 4).
Используем координаты точки С(7; 5)..
ответ: уравнение искомой прямой (х - 7)/(-6) = (у - 5)/4 это в каноническом виде, или в общем виде 2х + 3у - 29 = 0.