Объяснение:
Формула:
(n²-3n)/2, где n- количество сторон (углов) многоугольника.
а) восьмиугольник
n=8
(8²-3*8)/2=(64-24)/2=40/2=20 диагоналей.
б) двадцатиугольник
n=20
(20²-3*20)/2=(400-60)/2=170 диагоналей
в) девятиугольник
n=9
(9²-3*9)/2=(81-27)/2=54/2=27 диагоналей
г) четырехугольник
n=4
(4²-3*4)/2=(16-12)/2=4/2=2 диагонали
д) семиугольник
n=7
(7²-3*7)/2=(49-21)/2=28/2=14 диагоналей
е) двенадцатиугольника
n=12
(12²-3*12)/2=(144-36)/2=54 диагонали.
ж) пятиугольник
n=5
(5²-3*5)/2=(25-15)/2=10/2=5 диагоналей
з) десятиугольник
n=10
(10²-3*10)/2=(100-30)/2=70/2=35 диагоналей
и) шестиугольник
n=6
(6²-3*6)/2=(36-18)/2=9 диагоналей.
10)
1. AO=OK (по условию)
2. OC - общая сторона
3. т.к.
углы АОВ и АОС - смежные АОС= 180 - АОВ
углы КОВ и КОС - смежные КОС = 180 - КОВ
КОВ = АОВ (по условию) значит
АОС = 180 - АОВ = 180 - КОВ = КОС
4. треугольники АОС и КОС равны по двух сторонам и углу между ними
9)Треугольники АВК и МКС равны по двум сторонам и углу между ними (первый признак), так как ВК=МК, АК=КС (дано) и угол АКВ равен углу СКМ, как вертикальные.
8)Рассмотрим ΔAOK и ΔBOC : СО=ОА по условию,ВО=ОК по условию,∠СОВ=∠КОА как вертикальные. Значит ΔAOK = ΔBOC по первому признаку равенства треугольников :"Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны"
5)по 1 признаку
3)треугольник АЕО =ВКС т.к
1) АЕ=СК (по условию)
2) ЕО=СВ (по условию)
3) угол АОЕ=ВСК (по условию)
2)2.
Рассмотрим ∆CBO и ∆AKO:
KO=CO; AO=BO; ∠AOK=∠BOC.
∆CBO = ∆AKO по двум сторонам и углу между ними.
1)1.
Рассмотрим ∆ABC и ∆AKC:
AC - общая; BC=KC; ∠ACK=∠ACB.
∆ABC = ∆AKC по двум сторонам и углу между ними.
Объяснение: