Дано точку М(-3;5). Установіть відповідність між геометричними перетвореннями та координатами образу точки М при цьому перетворенні.
1 Паралельне перенесення на вектор а=(1;3)
2 Симетрія відносно осі абсцис
3 Симетрія відносно точки Р(-1;3)
4 Симетрія відносно прямої у=х
А (-3;-5)
Б (1;1)
В (-2;8)
Г (3;5)
Д (5;-3)
So = a²√3 / 4 = 2²√3 / 4 = √3.
Такую площадь имеют все грани пирамиды, а их 4.
Поэтому полная поверхность пирамиды равна S = 4√3.
V = (1/3)*So*H.
Для определения высоты пирамиды надо рассмотреть прямоугольный треугольник, где гипотенуза - боковое ребро, а катеты - высота пирамиды и 2/3 части высоты основания (вершина правильной пирамиды проецируется в основании на точку пересечения медиан, они же и высоты и биссектрисы в треугольнике основания).
Н =√(2² - (2√3 / 3)²) = √(8/3) = 2√2 / √3.
Отсюда V = (1/3)*√3*(2√2 / √3) = 2√2 / 3.