Т.к. АВ=ВС, то в равнобедр. треугольнике АВС АС - основание, к которому провели высоту, по свойству она же и медиана, ее половина стороны АС равна АК=6см, тогда АС =12см, а боковые стороны равны по (50-12)/2=19/см/
В треугольнике PRL RI - биссектриса, значит по теореме биссектрис: PR/RL=PI/IL. Аналогично в тр-ке PSL SI - биссектриса и PS/SL=PI/IL. Пришли к классической теореме биссектрис для тр-ка PRS: PI/IL=PR/RL=PS/SL. Пусть коэффициент подобия дробей PR/RL и PS/SL равен k, тогда: PS/SL=(PR·k)/(RL·k). Сложим числители и знаменатели этих подобных дробей: (PR+PS)/(RL+SL)=(PR+PR·k)/(RL+RL·k)=(PR·(1+k))/(RL·(1+k))=PR/RL. Но RL+SL=RS, значит: PI/IL=PR/RL=(PR+PS)/RS=(4+6)/8=10/8=5:4 - это ответ
PS. Таким образом это стандартное отношение отрезков биссектрисы на которые её делит точка пересечения биссектрис треугольника. В общем виде отношение таких отрезков биссектрисы считая от вершины угла можно представить как (a+b)/c, где в знаменателе сторона, к которой проведена биссектриса.
19 см
Объяснение:
AB=BC, следовательно, треугольник ABC - равнобедренный, следовательно, высота BK является также медианой, следовательно, AC = 2 * AK = 12 (см)
P = AB + BC + AC
50 = 2AB +12
2AB = 38
AB = 19 (см)
ответ : 19 см.