ед².
Обозначим данную пирамиду буквами .
ед.
Проведём высоту . Точка
- центр
- точка пересечения, медиан, высот и биссектрис треугольника.
Проведём апофему (апофема - это высота боковой грани пирамиды, проведённая из вершины пирамиды) к стороне
основания пирамиды.
Т.к. данная пирамида - правильная, треугольная ⇒ основание пирамиды - правильный треугольник.
.
Проведём высоту в
.
Т.к. - равносторонний ⇒
- высота, медиана, биссектриса.
Высота и апофема
имеют общее основание, а именно точку
, т.к.
- медиана, а апофема
делит
пополам (по свойству).
.
Рассмотрим :
- прямоугольный, так как
- высота.
Найдём высоту по теореме Пифагора:
ед.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Точка O - пересечение медиан и делит их в отношении 2 : 1, считая от вершины.
ед.
ед.
Рассмотрим :
- прямоугольный, так как
- высота.
Если угол прямоугольного треугольника равен , то напротив лежащий катет равен произведению меньшего катета на
.
ед.
Найдём апофему по теореме Пифагора:
ед.
====================================================
полн. поверх. = S основ. + S бок.поверх.
осн. =
ед².
бок. поверх. =
(
осн.
), где
- апофема.
осн.
ед.
⇒ бок. поверх. =
ед².
⇒ полн. поверх. =
ед².
P=244 см
В ромбе все стороны равны:
244:4=61 см.
d1=120 см.
Диагонали ромба в точке их пересечения делятся пополам.
Значит, 120:2=60 см - половина диагонали.
Диагонали ромба взаимно перпендикулярны (пересекаются под прямым углом).
Прямоугольный треугольник, сторона, являющаяся гипотенузой и равная 61 см, катет (половина диагонали), равный 60 см.
По теореме Пифагора:
61^2=х^2+60^2
3721=х^2+3600
3721-х^2-3600=0(3721-3600)
121-х^2=0
(11-х)(11+х)=0
11-х=0. 11+х=0
-х=-11 х=-11, не удовлетворяет условие.
х=11-удовлетворяет условие, половина d2
11*2=22
ответ:22
ответ:1)14•14=196см
2) 15•13= 195
4) 9+7+7=23. 23+9:2=16. 16•18=288
Объяснение: