СА – касательная к окружности. Вычислите градусную меру угла АВО, если ∠ВАС=58°.
[3]
2. Равнобедренный треугольник АВС (АВ=ВС) вписан в окружность с центром в точке О. Найдите величины дуг АС, АВ и ВС, если ∠АОС=70°. [4]
3. В окружности с центром в точке О проведен диаметр РМ=16,8 см и хорда АК, перпендикулярная РМ и равная радиусу данной окружности. Диаметр РМ и хорда АК пересекаются в точке Е.
a) выполните чертеж по условию задачи;
b) найдите радиус окружности; [4]
c) найдите длину отрезка АЕ;
d) вычислите периметр треугольника АОК.
4. В прямоугольном треугольнике СОК ( О = 90°) , СК= 18, СКО = 30° с центром в точке С проведена окружность. Каким должен быть ее радиус, чтобы:
а) окружность касалась прямой КО; [4]
b) окружность не имела общих точек с прямой КО;
c) окружность имела две общие точки с прямой КО?
5. Постройте треугольник АМР по сторонам АM=7 см, МK=6 см и углу ∠АМР = 45о. В полученном треугольнике постройте серединный перпендикуляр к стороне АР
Объяснение:
MN = 36
угол M = 30°
угол NPK = 90°
угол NKM = 90°
Найти:
MP, PN - ?
Решение:
Рассмотрим треугольник NKM:
NK = 0.5 NM (т. к. в прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы)
NK=0.5 × 36 = 18
Рассмотрим треугольник KPM:
угол NPK = угол KPM = 90°
угол PKM = 180° - 90° - 30° = 60° (т. к. сумма углов треугольника равна 180°)
Рассмотрим треугольник NPK:
угол NKP = угол NKM - угол PKM
угол NKP = 90° - 60° = 30°
PN = 0.5 NK (т. к. в прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы)
PN = 0.5 × 18 = 9
MP = MN - PN
MP = 36 - 9 = 27
ответ: MP = 27; PN = 9.