Основанием пирамиды, высота которой равна 12 дм, а боковые ребра равны друг другу, является прямоугольник со сторонами 6 дм и 8 дм. найдите площадь сечения, проведенного через диагональ основания параллельно боковому ребру. огромное вам, когда
1. Найдем длину диагоналей прямоугольника, лежащего в основании пирамиды. По теореме Пифагора:
дм.
AO = AC/2= 100/2 = 5 дм
2. Для наглядности, начертим сечение по плоскости на которой лежит треугольник AKC
По теореме Фалеса (при пересечении угла параллельными прямыми стороны угла делятся на пропорциональные отрезки) видно, что параллельные прямые AK и OM делят AC и KC на пропорциональные отрезки, так как AO=OC=AC/2 (точка O середина диагонали), верно равенство КМ=MC=KC/2.
Аналогично прямые КО и MN делят ONC на равные отрезки
ON=NC
По признаку равенства прямоугольных треугольников, ΔONM = ΔCNM
(по двум катетам).
Вычислим KC по теореме Пифагора:
Далее OM=MC=KC/2 =
Площадь равнобедренного треугольника BMD равна половине произведения основания BD на высоту OM
Если внешний угол при вершине А равен 135 градусов, то внутренний угол А равен 180°-135° = 45°. Для определения стороны АС воспользуемся теоремой синусов. Сначала найдём угол С. sin C = (4*sin 45°)/6√2 = (4*1)/(√2*6√2) = 4/12 = 1/3. Угол С = arc sin(1/3) = 0,339837 радиан = 19,47122°. Находим угол В = 180°-45°-19,47122° = 115,5288°.
Сторону АС можно определить двумя 1) - по теореме синусов, 2) - по теореме косинусов.
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
50
Объяснение:
1. Найдем длину диагоналей прямоугольника, лежащего в основании пирамиды. По теореме Пифагора:
дм.
AO = AC/2= 100/2 = 5 дм
2. Для наглядности, начертим сечение по плоскости на которой лежит треугольник AKC
По теореме Фалеса (при пересечении угла параллельными прямыми стороны угла делятся на пропорциональные отрезки) видно, что параллельные прямые AK и OM делят AC и KC на пропорциональные отрезки, так как AO=OC=AC/2 (точка O середина диагонали), верно равенство КМ=MC=KC/2.
Аналогично прямые КО и MN делят ONC на равные отрезки
ON=NC
По признаку равенства прямоугольных треугольников, ΔONM = ΔCNM
(по двум катетам).
Вычислим KC по теореме Пифагора:
Далее OM=MC=KC/2 =
Площадь равнобедренного треугольника BMD равна половине произведения основания BD на высоту OM
S BDM = BD*OM =