ΔАВC - тупоугольный, так как ∠А=∠С=30° ,∠В=180°-30°-30°=120° , АВ=ВС .
Проведём высоты АN и CM . Основания высот будут падать на продолжение боковых сторон BM и BN. Продолжение высот будет пересекаться в точке Н.
Рассмотрим четырёхугольник MHNB. Сумма углов четырёхугольника равна 360°, причём два угла по 90°, а один угол ∠MBN=∠АВС=120° (углы равны как вертикальные).
площадь АВС=1/2*АВ*АС*sin30=1/2*6*10*1/2=15, АС в квадрате=АВ в квадрате+АС в квадрате-2*АВ*АС*cos30=36+100-2*6*10*корень3/2=136-60*корень3, АС=корень(136-60*корень3), периметр=6+10+корень(136-60*корень3)=16+корень(136-60*корень3), можно провести высоту на АС, тогда треугольник АВН прямоугольный, ВН=1/2АВ=6/2=3, АН=корень(АВ в квадрате-ВН в квадрате)=корень(36-9)=3*корень3, НС=АС-АН=10-3*корень3, треугольник ВНС прямоугольный, ВС=корень(ВН в квадрате+НС в квадрате)=корень(9+100-60*корень3+27)=корень(136-60*корень3) и периметр такой же, только ответ что то не нравится
В параллелепипеде 6 граней, - по две противоположных, которые попарно равны между собой. Естественно, их диагонали также равны. В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения) В данном случае диагонали равны 30, 40 и 70 см. По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон. Здесь имеем "треугольник" и три длины, и 70=30+40. Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней. Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
ответ: 60° .
Объяснение:
ΔАВC - тупоугольный, так как ∠А=∠С=30° ,∠В=180°-30°-30°=120° , АВ=ВС .
Проведём высоты АN и CM . Основания высот будут падать на продолжение боковых сторон BM и BN. Продолжение высот будет пересекаться в точке Н.
Рассмотрим четырёхугольник MHNB. Сумма углов четырёхугольника равна 360°, причём два угла по 90°, а один угол ∠MBN=∠АВС=120° (углы равны как вертикальные).
Угол между высотами ∠АНС=360°-90°-90°-120°=60° .