Пусть в трапеции ABCD AD, BC - основания, а диагонали пересекаются в точке O. В треугольнике AOD проведем высоту OH. Так как трапеция равнобедренная, AO=DO, и в прямоугольном треугольнике AOD острые углы равны 45 градусам. Тогда в прямоугольном треугольнике AOH один из углов равен 45 градусам, тогда и второй угол равен 45 градусам, тогда катеты равны, AH=OH. Аналогично проведем высоту OM в треугольнике BOC, получим, что BM=MO (треугольник BMO прямоугольный и равнобедренный). Тогда высота трапеции - HM - равна AH+BM - полусумме оснований - средней линии. Площадь равна произведению средней линии на высоту, тогда она равна 6*6=36.
Объяснение:
Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды:
АМ*МВ =СM*МD
5*30=СM*6 СM=150:6 СM=25см
CD=СM+МD=25+6=31см