25π см² или 4π см² ( при разных формулировках задачи).
Объяснение:
1. Условие задачи неоднозначное. Если речь идёт о площади круга, описанного около треугольника, то решение следующее:
1) По теореме Пифагора найдём гипотенузу данного треугольника:
с² = а² + b² = 6² + 8² = 100
c = √100 = 10 (см).
2) Середина гипотенузы является центром описанной окружности, тогда R = c/2 = 10/2 = 5 (см).
3) Площадь круга с радиусом R может быть найдена по формуле S = πR².
В нашем случае
S = π•5² = 25π (см²).
2. Если треугольник описан около круга, т.е. сам круг является вписанным, и его радиус равен r см, то r = p - c, где р - полупериметр, а с - гипотенуза прямоугольного треугольника. r = (6+8+10):2 - 10 = 2 (см). Тогда площадь вписанного круга S = πr² = π•2² = 4π (см²).
Решение первой задачи. Оно несколько громоздкое, может, разобравшись, сумеете дать короче.
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
Для решения задачи нужно сначала найти катет треугольника, который делится биссектрисой.
Вспомним свойство отрезков касательных из одной точки к окружности. Эти отрезки равны.
Обязательно сделайте рисунок. ( не получается его добавить)
Гипотенуза треугольника равна 5+12=17
В каждом катете есть отрезок, равный одному из отрезков кастательных из той же точки к гипотенузе.
Один катет равен 12+х
другой ( искомый )- равен х+5
Составим уравнение:
17²=(х+5)²+(12+х)²
289=х²+10х+25+144+24х+х²
120=2х²+34х (сократим на 2)
х²+17х-60=0
Решив уравнение через дискриминант, найдем
х=3 (второй корень отрицательный и не подходит)
Меньший катет( лежит против меньшего угла) равен 3+5=8
Больший равен 3+12=15 см
Настало время применить теорему, данную в начале задачи:
Обозначим оди из отрезков катета у, второй 8-у
у:(8-у)=15:17
17у=120-15у
32у=120
у=3,75 см - первый отрезок
8-3,75=4,25 см - второй отрезок.
4. <СКВ=(дуги СВ+АD)/2=> <СКВ=50°(по теореме о пересечении хорд)=> <ВКD=130°{180°-50°}
ответ: 130°
5. т.к.<АОВ-центральный=><АОВ=дуга АВ=80°=>бОльшая дуга АВ=280°{360°-80°}
т.к.<АКВ-вписанный=> <АКВ=бОльшая дуга АВ/2=>140°{280°/2}-по теореме о вписанном угле
ответ:140°