1). Сторона квадрата описанного около окружности равна диагонали квадрата вписанного в эту окружность. По т. Пифагора найдем длину диагонали - √(4²+4²)=4√2 см. Площадь квадрата - (4√2)²=32 см². 2). Площадь искомого треугольника получается при вычитании площади прямоугольника описанного вокруг него и трех прямоугольных треугольников. S(прям)=3*6=18 ед²; S(тр)1=3*2/2=3 ед²; S(тр)2=4*2/2=4 ед²; S(тр)3=1*6/2=3 ед²; S(тр)=18-3-4-3=8 ед²;
Нехай прямі АВ та СМ перетинаються в т.О. Кут АОС=ВОМ, бо вони вертикальні, а вертикальні кути рівні між собою. Кут АОМ=СОВ, бо вони вертикальні, а вертикальні кути рівні між собою. Нехай ∠СОВ+∠ВОМ+∠АОМ=286°. Суміжними називаються два кути, у яких одна сторона спільна, а дві інші є продовженням одна одної. Сума суміжних кутів дорівнює 180°. ∠СОВ+∠ВОМ=180°, бо вони суміжні. ∠АОМ+∠АОС=180°, бо вони суміжні. Виходить, що сума всіх кутів, що утворилися в результаті перетину прямих дорівнює 360°: ∠СОВ+∠ВОМ+∠АОМ+∠АОС=180°+180° ∠СОВ+∠ВОМ+∠АОМ+∠АОС=360° Оскільки ∠СОВ+∠ВОМ+∠АОМ=286°, виходить 286°+∠АОС = 360° ∠АОС=360-286 ∠АОС=74°. Виходить, що ∠АОС=∠ВОМ=74°.
Тепер оскільки ∠СОВ+∠ВОМ=180°, то ∠СОВ+74°=180° ∠СОВ=180°-74° ∠СОВ=106°. Виходить, що ∠СОВ=∠АОМ=106°.
2). Площадь искомого треугольника получается при вычитании площади прямоугольника описанного вокруг него и трех прямоугольных треугольников.
S(прям)=3*6=18 ед²;
S(тр)1=3*2/2=3 ед²;
S(тр)2=4*2/2=4 ед²;
S(тр)3=1*6/2=3 ед²;
S(тр)=18-3-4-3=8 ед²;
4) ∪MD=L/360*90=2piR/4=piR/2=6.5pi
R/2=6.5; R=13
S(ABCD)=AD*OM=2R*R=2R^2=2*13^2=338 кв.см
3) (рисунок снизу)