М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bezlikaya1
bezlikaya1
02.12.2020 23:10 •  Геометрия

Найдите два угла с взаимно перпендикулярными сторонами, если они относятся, как 6: 9.

👇
Ответ:
anastasia1292
anastasia1292
02.12.2020
Пусть даны углы АВС и КВ`М.
Расположим их так, чтобы их вершины совпали. ( см.рисунок в приложении. 
 Так как по условию стороны этих углов взаимно перпендикулярны,
то КВ⊥АВ, а МВ⊥ВС.
Промежуточные углы КВА и МВС прямые.
Сумма всех четырех углов с общей вершиной равна 360°. 
Тогда ∠АВС+∠КВМ=360°-(∠АВК+∠МВС)=180°
Примем коэффициент отношения данных углов равным х.
Тогда 6х+9х=180°, откуда х=12°
Угол АВС=9•12°=108º
Угол КВМ=6•12º=72°

Найдите два угла с взаимно перпендикулярными сторонами, если они относятся, как 6: 9.
4,7(28 оценок)
Открыть все ответы
Ответ:
darytish
darytish
02.12.2020
1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..))
   По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника.
Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.

2) Так как CED - равнобедренный, то ∠ECD = ∠EDC =>
                                                           ∠ECM = ∠MCD = ∠EDH = ∠HDC
Тогда ΔHDC = ΔMCD по стороне и двум углам:
                                   (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC)
Отсюда следует, что HC = MD.

В ΔСАН и ΔMAD:  HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC  =>
эти треугольники равны по стороне и двум углам
4,7(44 оценок)
Ответ:
sumat2
sumat2
02.12.2020

Любые две из трех прямых, соединяющих середины отрезков AB и CD; AC и BD; AD и BC  могут быть: 

а) параллельны одной из этих прямых. 

Через две параллельные прямые можно провести плоскость, притом только одну. 

 

б) пересекаться: 

Через две пересекающиеся прямые можно провести плоскость, притом только одну. 

В рисунке приложения даны некоторые из получающихся пар  параллельных и пересекающихся прямых:

а) pd и mn как средние линии треугольников АСD и BCD параллельны AD;   kp и no параллельны  основанию АС треугольников АDC и АВС.

б) km и mn,  mn  и no пересекаются. 


Даны четыре точки a b c d не лежащие в одной плоскости. докажите,что любые две из трех прямых,соедин
4,6(35 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ