Объяснение:
ЗадачаПлощадь параллелограмма равно 96 см², а его высота - 8 см. Найти сторону, к которой проведена высота.
РешениеПо формуле площади параллелограмма:
S = ahₐ
96 = a * 8
a = 96/8
a = 12 см
ответ12 см
a||b
c-секущая
угол 3 < угла 4 на 30°
пусть х это угол 3, тогда угол 4 это х+30
так как угол 3 и угол 4 смежные, то их сумма равна 180°
составим и решим уравнение :
х+х+30=180
2х+30=180
2х=180-30
2х=150
х=150:2
х=75
угол 3 равен 75°, значит угол 4 равен 75+30=105°
угол 3 равен углу 6 как накрест лежащие и равен 75°
угол 4 равен углу 5 как накр. леж. и равен 105°
угол 2 равен углу 3 как вертикальные,
угол 5 равен углу 8 как вертикальные
угол 4 равен углу 1 как вертикальный
угол 5 равен углу 8 как вертикальный
вот, надеюсь все понятно)
ответ: один з кутів паралелограма дорівнює 45°, висота опущена з вершини тупого кута , яка ділить сторону паралелограма на 2 рівні частини= 3см. Знайдіть площу паралелограма.
Объяснение: рішення:
Виходить рівнобедренний трикутник, висота = половині сторони, отже сторона = 6см . Бічна сторона паралелограма ( за теоремою Піфагора ) дорівнює корінь з 18 = 3корінь з 2.
За формулою площі паралелограма ( S = a×h) = 3корінь з 2 × 3 = 9корінь з 2 = корінь з 162 :)