В прямоугольной трапеции острый угол равен 45 градусов. Меньшая боковая сторона равна 7 см, а большее основание равно 16 см. Вычисли длину меньшего основания.
Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
1)Дано: ∆АВС - равнобедренный.
∠В = 96°
Найти:
∠А, ∠С.
У равнобедренного треугольника углы при основании равны.
оба угла не могут быть по 96°, так как сумма углов треугольника равна 180°
Поэтому ∠В = 96°
180 - 96 = 84° - сумма углов при основании. (На рисунке углы при основании А и С)
Так как ∠А = ∠С => ∠А = ∠С = 84 ÷ 2 = 42°
ответ: 42°, 42°.
2) Дано:
∆CDE
∠E = 32°
CF - биссектриса.
∠CFD = 72°
Найти:
∠D
Сумма смежных углов равна 180°
∠CFD смежный с ∠CFE => ∠CFE = 180 - 72 = 108°
Сумма углов треугольника равна 180°
=> ЕCF = 180 - (108 + 32) = 40°
Так как СF - биссектриса => ∠С = 40 × 2 = 80°
Сумма углов треугольника равна 180°
=> ∠D = 180 - (32 + 80) = 68°
ответ: 68°