12 см если точка А лежит между точками С и В.
3 см если точка С лежит между точками А и В.
Объяснение:
Точки на прямой можно расположить в двух вариантах:
Первый: точка А лежит между точками С и В.
___С_4,5/_ 4,5А___7,5/___7,5В___
9 см 15 см
Тогда расстояние между серединами отрезков АВ и АС равно:
15:2 + 9:2 = 7,5 + 4,5 = 12 см.
Второй: точка С лежит между точками А и В.
Тогда расстояние между серединами отрезков АВ и АС равно:
АВ = 15 см
I7,5I - 7.5 см половина отрезка АВ
__А___4,5/I__СВ__
АС= 9 см
15:2 - 9:2 = 7,5 - 4,5 = 3 см.
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).
m=12/2/3=1
Объяснение: