Если боковые рёбра пирамиды составляют равные углы с плоскостью основания, то основанием высоты пирамиды является центр окружности описанной около многоугольника из основания.
Центр окружности описанной около треугольника лежит внутри треугольника, если он остроугольный.
Так же этот центр лежит на пересечении серединных перпендикуляров к сторонам треугольника. Если центр описанной окружности лежит на одной высоте треугольника, то эта высота лежит на серединном перпендикуляре. А значит высота одновременно является и медианой. Тогда треугольник равнобедренный.
Думаю так выберешь одно из них: 1)Через вершину С провести прямую параллельно диагонали. Получится треугольник АСЕ, в котором АЕ = 14+1=15м, АС = 13м, СЕ = 14м. Найти площадь этого треугольника по формуле Герона. Потом найти высоту этого треугольника, разделив две его площади на АЕ, то есть на 15. Высота эта будет и высотой трапеции, площадь трапеции можно найти по формуле: S=1/2(a+b)h 2)Разность осн-ний=13см. Высоты отсекают от большего осн-ния отрезки, один из кот. =х, другой=(13-х) Выразив высоту трапеции через диагональ и часть большего осн-ния, получаем: 169-x^2=196-(13-x)^2 Найти "х", вычислить высоту (h) Найти площадь по ф-ле: S=h*(a+b)/2=?
остроугольный и равнобедренный.
Объяснение:
Если боковые рёбра пирамиды составляют равные углы с плоскостью основания, то основанием высоты пирамиды является центр окружности описанной около многоугольника из основания.
Центр окружности описанной около треугольника лежит внутри треугольника, если он остроугольный.
Так же этот центр лежит на пересечении серединных перпендикуляров к сторонам треугольника. Если центр описанной окружности лежит на одной высоте треугольника, то эта высота лежит на серединном перпендикуляре. А значит высота одновременно является и медианой. Тогда треугольник равнобедренный.