Теорема 1 (теорема Фалеса). Параллельные прямые высекают на пересекающих их прямых пропорциональные отрезки (рис. 1).
Определение 1. Два треугольника (рис. 2) называются подобными, если соответствующие стороны у них пропорциональны.
Теорема 2 (первый признак подобия). Если угол первого треугольника равен углу второго треугольника, а прилежащие к этим углам стороны треугольников пропорциональны, то такие треугольники подобны (см. рис. 2).
Теорема 3 (второй признак подобия). Если два угла одного треугольника равны соответственно двум углам другого треугольника, то такие треугольники подобны (рис. 3).
Теорема 4 (теорема Менелая). Если некоторая прямая пересекает стороны AB и BC треугольника ABC в точках X и Y соответственно, а продолжение стороны AC — в точке Z (рис. 4), то
Теорема 5. Пусть в остроугольном треугольнике ABC проведены высоты AA1 и CC1 (рис. 5). Тогда треугольники A1BC1 и ABC подобны, причем коэффициент подобия равен cos ∠B.
Лемма 1. Если стороны AC и DF треугольников ABC и DEF лежат на одной прямой или на параллельных прямых (рис. 6), то
Лемма 2. Если два треугольника имеют общую сторону AC (рис. 7), то
Лемма 3. Если треугольники ABC и AB1C1 имеют общий угол A, то
Лемма 4. Площади подобных треугольников относятся как квадрат коэффициента подобия.
Объяснение:
Справочник
Прямая, плоскость
Статью подготовили специалисты образовательного сервиса Zaochnik.
Как работает сервис
Наши социальные сети
Координаты точки пересечения двух прямых - примеры нахождения
Содержание:
Точка пересечения двух прямых – определение
Нахождение координат точки пересечения двух прямых на плоскости
Нахождения координат точки пересечения двух прямых в пространстве
Для того, чтобы решить геометрическую задачу методом координат, необходима точка пересечения, координаты которой используются при решении. Возникает ситуация, когда требуется искать координаты пересечения двух прямых на плоскости или определить координаты тех же прямых в пространстве. Данная статья рассматривает случаи нахождения координат точек, где пересекаются заданные прямые.
Точка пересечения двух прямых – определение
Необходимо дать определение точкам пересечения двух прямых.
Раздел взаимного расположения прямых на плоскости показывает, что они могут совпадать , быть параллельными, пересекаться в одной общей точке или скрещивающимися. Две прямые, находящиеся в пространстве, называют пересекающимися, если они имеют одну общую точку.
Определение точки пересечения прямых звучит так:
Определение 1
Точка, в которой пересекаются две прямые, называют их точкой пересечения. Иначе говоря, что точка пересекающихся прямых и есть точка пересечения.
Рассмотрим на рисунке, приведенном ниже.
Точка пересечения двух прямых – определение
Нахождение координат точки пересечения двух прямых на плоскости
Перед нахождением координат точки пересечения двух прямых, необходимо рассмотреть предлагаемый ниже пример.
Если на плоскости имеется система координат
О
х
у
,
то задаются две прямые
a
и
b
. Прямой
a
соответствует общее уравнение вида
A
1
x
+
B
1
y
+
C
1
=
0
, для прямой
b
-
A
2
x
+
B
2
y
+
C
2
=
0
. Тогда
M
0
(
x
0
,
y
0
)
является некоторой точкой плоскости необходимо выявить , будет ли точка
М
0
являться точкой пересечения этих прямых.
Чтобы решить поставленную задачу, необходимо придерживаться определения. Тогда прямые должны пересекаться в точке, координаты которой являются решением заданных уравнений
A
1
x
+
B
1
y
+
C
1
=
0
и
A
2
x
+
B
2
y
+
C
2
=
0
. Значит, координаты точки пересечения подставляются во все заданные уравнения. Если они при подстановке дают верное тождество, тогда
M
0
(
x
0
,
y
0
)
считается их точкой пересечения.
Пример 1
Даны две пересекающиеся прямые
5
x
−
2
y
−
16
=
0
и
2
x
−
5
y
−
19
=
0
. Будет ли точка
М
0
с координатами
(
2
,
−
3
)
являться точкой пересечения.
Решение
Чтобы пересечение прямых было действительным, необходимо, чтобы координаты точки
М
0
удовлетворяли уравнениям прямых. Это проверяется при их подстановки. Получаем, что
5
⋅
2
−
2
⋅
(
−
3
)
−
16
=
0
⇔
0
=
0
2
⋅
2
−
5
⋅
(
−
3
)
−
19
=
0
⇔
0
=
0
Оба равенства верные, значит
М
0
(
2
,
−
3
)
является точкой пересечения заданных прямых.
Изобразим данное решение на координатной прямой рисунка, приведенного ниже.
Нахождение координат точки пересечения двух прямых на плоскости
ответ: заданная точка с координатами
(
2
,
−
3
)
будет являться точкой пересечения заданных прямых.
Пример 2
Пересекутся ли прямые
5
x
+
3
y
−
1
=
0
и
7
x
−
2
y
+
11
=
0
в точке
M
0
(
2
,
−
3
)
?
Решение
Для решения задачи необходимо подставить координаты точки во все уравнения. Получим, что
5
⋅
2
+
3
⋅
(
−
3
)
−
1
=
0
⇔
0
=
0
7
⋅
2
−
2
⋅
(
−
3
)
+
11
=
0
⇔
31
=
0
Второе равенство не является верным, значит, что заданная точка не принадлежит прямой
7
x
−
2
y
+
11
=
0
. Отсюда имеем, что точка
М
0
не точка пересечения прямых.
Чертеж наглядно показывает, что
М
0
- это не точка пересечения прямых. Они имеют общую точку с координатами
(
−
1
,
2
)
.
Нахождение координат точки пересечения двух прямых на плоскости
ответ: точка с координатами
(
2
,
−
3
)
не является точкой пересечения заданных прямых.
Переходим к нахождению координат точек пересечения двух прямых при заданных уравнений на плоскости.
Задаются две пересекающиеся прямые
a
и
b
уравнениями вида
A
1
x
+
B
1
y
+
C
1
=
0
и
A
2
x
+
B
2
y
+
C
2
=
0
, расположенных в
О
х
у
. При обозначении точки пересечения
М
0
получим, что следует продолжить поиск координат по уравнениям
A
1
x
+
B
1
y
+
C
1
=
0
и
A
2
x
+
B
2
y
+
C
2
=
0
.
Из определения очевидно, что
М
0
является общей точкой пересечения прямых. В этом случае ее координаты должны удовлетворять уравнениям
A
1
x
+
B
1
y
+
C
1
=
0
и
A
2
x
+
B
2
y
+
C
2
=
0
. Иными словами это и есть решение полученной системы
{
A
1
x
+
B
1
y
+
C
1
=
0
Объяснение:
180-20=160