(х-а)²+(у-в)²=R²- уравнение окружности где (а;в)-координаты центра окружности R--радиус (х-2)²+(у-3)²=4² (х-2)²+(у-3)²=16 начало координат имеет координаты О(0;0) (х-0)²+(у-0)²=(5/2)² x²+y²=25/4 (R=5/2) X²+y²=25 (R=5) 2. C x=(2+4)÷2 y=(7+5)÷2 x=3 y=6 C (3 ; 6) координаты середины отрезка находятся за формулой х=(х1+х2)÷2; у=(у1+у2)÷2 где (х1; у1) (х2;у2) координаты конца отрезка АВ ((4-2); (7-5)) АВ (2;2) АВ²=(4-2)²+(7-5)²=2²+2²=4+4=8 АВ=√8=√4·2=√2²·2=2√2 y=kx+b уравнение прямой если прямая проходит через точки значит ее координаты удовлетворяют уравнение прямой 5=2k+b (×-1) -5=-2k-b 7=4k+b первое уравнение + второе 2=2k k=2/2=1 5=2·1+b b=5-2=3 y=x+3 уравнение прямой которая проходит через точки А и В
P1K - высота треугольника РР1N1
P1K = 8*корень(2)
P1Q = корень(8^2+15^2)=17
tg(KQP1) = P1K /P1Q = 8*корень(2)/17
угол KQP1= arctg( 8*корень(2)/17) ~ 33,64425 градус
2)
АК=3*корень(3^2+2^2)=3*корень(13)
АC=3*корень(2)
CК=3*корень(3^2+2^2)=3*корень(13)
CO - высота треугольника АСК
СО*АК=АС*корень(АК*АК-АС*АС/4)
СО=АС*корень(АК*АК-АС*АС/4)/АК=АС*корень(1-(АС/(2АК))^2)=
СО=3*корень(2)*корень(1-(3*корень(2)/(2*3*корень(13)))^2)=15/КОРЕНЬ(13)
tg(alpha)=C1C/СО=5*КОРЕНЬ(13)/15= КОРЕНЬ(13)/3
угол alpha=arctg(КОРЕНЬ(13)/3) ~ 50,23784 градус
3)
C1G=5*корень(2^2+1^2)=5*корень(5)
А1C1=5*корень(2)
A1G=5*корень(5)
A1O - высота треугольника А1С1G
A1О*C1G=А1С1*корень(C1G^2 –А1С1^2 /4)
A1О= А1С1*корень(C1G^2 –А1С1^2 /4)/ C1G= А1С1*корень(1 –(А1С1/2 C1G) ^2) = =5*корень(2)*корень(1 –(5*корень(2)/(2*5*корень(5))) ^2)=3*корень(5)
tg(alpha)=A1A/A1О=9/(3*КОРЕНЬ(5)) = 3/КОРЕНЬ(5)
угол alpha=arctg(3/КОРЕНЬ(5)) ~ 53,30077 градус