Объяснение:"Углом между указанными плоскостями MDC и АВС является угол, стороны которого – лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру".
1одну 2одну 3 часть прямой с двух сторон ограниченная точками 4часть прямой ограниченная с одной стороны точкой. Либо двумя большими буквами, либо одной маленькой 5два луча исходящие из одной точки. вершина их общее начало, сторона это сами лучи 6обе его стороны лежат на одной прямой 7имеют одинаковую форму и размеры 8 наложить один на другой, чтобы один конец совпал с другим 9 делит его пополам 10 наложить, чтобы одна сторона совмеситлась с другой, а остальные в одну сторону 11 делит угол пополам 12сложить их 13линейка 14сколько градусов он содержит 15сложить их 16меньше 90°, равен 90°, больше 90 но меньше 180° 17хз 18 имеют одну общую сторону,180 19 в точке пересечения образуются прямые углы 20 прямые могут пересечься только в одной точке 21экер,теодолит
ответ: arctg(√2tgα).
Объяснение:"Углом между указанными плоскостями MDC и АВС является угол, стороны которого – лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру".
1) ΔДОС: ОД=ОС по свойству диагоналей квадрата,
ОЕ- медиана по условию ⇒ОЕ- высота и ∠ОЕС=90°.
2) ΔОЕС: ∠ОЕС=90°, пусть ДС=а, тогда ОЕ=ЕС=а/2,
ОС²=(а/2)²+(а/2)²=а²/4 + а²/4= 2а²/4= а²/2;
ОC=а:√2= (а√2) :2.
ОМ:ОС=tgα ⇒ ОМ=ОС*tgα= (а√2) :2 * tgα= (а√2*tgα) :2.
3) ΔОМЕ: ОМ⊥ пл.АВС, ОЕ⊂пл.АВС ⇒ ОМ⊥ОЕ.
tg∠ОЕМ = ОМ:ОЕ = (а√2*tgα):2 :а/2= (а√2*tgα):а= √2tgα;
4) ОЕ⊂пл.АВС, ОЕ⊥ДС, МЕ- наклонная к пл.АВС,
ОЕ- проекция МЕ на пл.АВС ⇒
⇒ по теореме о трёх перпендикулярах МЕ ⊥ ДС.
пл.АВС ∩ пл.ДМС= ДС, МЕ ⊂ пл.ДМС и МЕ⊥ДС,
ОЕ ⊂ пл.АВС и ОЕ⊥пл. АВС ,
значит ∠(МДС;АВС)=∠ОЕМ= arctg(√2tgα).