Чертишь транспортиром острый угол, на любом луче(но удобней на нижнем), исходящем из центра острого угла откладываешь катет, проводишь перпендикуляр из конца отрезка катета.
Смежные углы параллелограмма в сумме равны 180 гр. Если один в 5 раз больше другого, то это 30 и 150 гр. Диагональ это высота, значит, она делит угол 150 на 60 и 90. Вот я нарисовал. Если диагональ - высота равна d1, углы BAD = 30, ADB = 60 AD = b = d1/sin 30 = 2d1; AB = a = bcos 30 = 2d1*√3/2 = d1*√3 Угол ADC = 150. По теореме косинусов в треугольнике ADC AC^2 = AD^2 + CD^2 - 2*AD*CD*cos ADC = = b^2+a^2-2a*b*cos 150 = 4d1^2 + 3d1^2 - 2*2d1*d1*√3(-√3/2) = = 7d1^2 + 4d1^2*3/2 = 7d1^2 + 6d1^2 = 13d1^2 AC = d1*√13 Отношение диагоналей равно AC : BD = d1*√13 / d1 = √13
Так как призма прямая и в основании квадрат, все углы между ребрами прямые. Между пересекающимися боковым ребром и диагональю основания, а так же пересекающимися стороной основания и диагональю боковой грани уголы прямые (если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости, проходящей через точку пересечения). По теореме Пифагора находим: (17^2-15^2)=64 - квадрат диагонали основания. 64/2 = 32 - квадрат стороны основания. 32 + 15^2 = 32+225 =257 - квадрат диагонали боковой грани \|257 (см) - диагональ боковой грани
Чертишь транспортиром острый угол, на любом луче(но удобней на нижнем), исходящем из центра острого угла откладываешь катет, проводишь перпендикуляр из конца отрезка катета.