Треугольник вписан в окружность так,что одна из его сторон проходит через центр окружности,а две другие удалены от него на 6см и на 4√3 см.найдите площадь треугольника.
Сторона, проходящая через центр окр. - диаметр, угол, опирающийся на дмаметр прямой, след. тр-к прямоугольный. Расстояние от точки до линии меряется вдоль перпендекуляра.
Из условия задачи следует, что угол при основании треугольника АВС равен 30 град. Обозначим сторону равнобедренного треугольника через а, основание через b, радиус описанной окружности через R. Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3) Известно, что: R=a^2/sqr(4a^2-b^2) Подставив значение b, получим: R=a Отсюда: АВ=2 см Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда: r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.
Если квадрат и ромб имеют одинаковые периметры, тто они имеют и одинаковые стороны. Вычисление площади параллелограмма в случае ромба. В данном случае стороны равны, значит формула упрощается до . Заметим, что Это угол между сторонами ромба. Здесь не имеет значения острый или тупой, так как в обоих случаях будет положительный ответ. Площадь квадрата же всегда равна . Заметим, что синус всегда меняется в данном случае от 0 до 1. То есть только в случае синуса равного 1 (а это квадрат) площадь ромба равна площади квадрата, в остальных случаях площадь ромба всегда меньше площади квадрата.
Сторона, проходящая через центр окр. - диаметр, угол, опирающийся на дмаметр прямой, след. тр-к прямоугольный. Расстояние от точки до линии меряется вдоль перпендекуляра.
S= 4*0.5*6*4*квкор(3)=48*квкор(3)~ 83.14