Равнобедренный треугольник — две стороны равны, третья называется основанием. Медиана, биссектриса, высота, проведенные к основанию - равны (являются ими одновременно) . Углы при основании равны.
Свойства равнобедренного треугольникаВ равнобедренном треугольнике:1) углы при основании равны (и острые);2) медиана, биссектриса, высота и серединный перпендикуляр, проведенные к основанию, совпадают.3) медианы, проведенные к боковым сторонам, равны.4) биссектрисы, проведенные к боковым сторонам, равны.5) высоты, проведенные к боковым сторонам, равны. Признаки равнобедренного треугольника а) Если в треугольнике два угла равны, то треугольник равнобедренный (сторона, к которой прилежат оба равных угла – основание).б) Если в треугольнике совпадают любые две из четырех линий (медиана, биссектриса, высота, серединный перпендикуляр), проведенные к некоторой стороне треугольника, то треугольник равнобедренный (а эта сторона является основанием).в) Если в треугольнике две медианы равны, то треугольник равнобедренный (а стороны, к которым проведены медианы – боковые).г) Если в треугольнике две биссектрисы равны, то треугольник равнобедренный (а стороны, к которым проведены биссектрисы – боковые).д) Если в треугольнике две высоты равны, то треугольник равнобедренный (а стороны, к которым проведены высоты – боковые).
Ну вот смотрите. если взять точку внутри этого девятиугольника и провести из неё перпендикуляры ко всем сторонам, то угол между двумя такими перпендикулярами равен углу между сторонами, к которым они проведены (углы равны, если их стороны перпендикулярны попарно). Если брать два соседних перпендикуляра, то угол между ними как раз равен внешнему углу девятиугольника. Это означает, что сумма всех внешних углов девятиугольника (и вообще любого выпуклого многоугольника) равна 360°; Так как все эти внешние углы равны, - ответ 360°/9 = 40°;
Тут рядом лежит и вычисления суммы внутренних углов α1, α2, ... αN Как только что найдено, (180° - α1) + (180° - α2) + + (180° - αN) = 360°; поэтому α1 + α2 + + αN = N*180° - 360° = (N - 2)*180°; Эту же формулу можно получить, проведя все N - 3 диагонали из одной (все равно какой) вершины, которые разобьют многоугольник на N - 2 треугольника. Соответственно, так получается другое решение этой задачи. Действительно, сумма внутренних углов девятиугольника 180°(9 - 2) = 7*180°; каждый внутренний угол (если они равны) 7*180°/9 = 7*20° = 140°; откуда внешний угол равен 180° - 140° = 40°;
Свойства равнобедренного треугольникаВ равнобедренном треугольнике:1) углы при основании равны (и острые);2) медиана, биссектриса, высота и серединный перпендикуляр, проведенные к основанию, совпадают.3) медианы, проведенные к боковым сторонам, равны.4) биссектрисы, проведенные к боковым сторонам, равны.5) высоты, проведенные к боковым сторонам, равны.
Признаки равнобедренного треугольника
а) Если в треугольнике два угла равны, то треугольник равнобедренный (сторона, к которой прилежат оба равных угла – основание).б) Если в треугольнике совпадают любые две из четырех линий (медиана, биссектриса, высота, серединный перпендикуляр), проведенные к некоторой стороне треугольника, то треугольник равнобедренный (а эта сторона является основанием).в) Если в треугольнике две медианы равны, то треугольник равнобедренный (а стороны, к которым проведены медианы – боковые).г) Если в треугольнике две биссектрисы равны, то треугольник равнобедренный (а стороны, к которым проведены биссектрисы – боковые).д) Если в треугольнике две высоты равны, то треугольник равнобедренный (а стороны, к которым проведены высоты – боковые).