Все задачи стереометрии решаются при планиметрии. Единственное условие: правильно выполненный чертёж. Давай сделаем чертёж вместе. Чертишь плоскость. Над нею бери точку В. Через точку В проводишь прямую, протыкающую плоскость. Под плоскостью на этой прямой отмечаешь точку А. Теперь отмечай точку К. Она на АВ и на плоскости. Через точку К проводи небольшой отрезок в плоскости. Это отрезок KL. Теперь соединяй точки А и L, продолжай дальше над плоскостью. Осталось провести ВС. Надо учесть, что ВС || KL. Получается картинка:Δ АВС, сделанный из плотного картона, проткнул нашу плоскость и прорезал её по KL. Чертёж готов. Теперь смотрим: Δ АВС подобен Δ AKL (по равенству углов) ⇒ВС : KL = AC : AL, 3 : 1 = AC : 12 АС = 3·12 :1 = 36 АС = 36
Основание пирамиды - правильный треугольник АВС с высотой АН=(√3/2)*9. Треугольники АВС и АМL подобны с коэффициентом подобия 9/6. Значит ML=ВС*6/9=6, АО=АН*6/9=3√3. Проведем КР параллельно высоте пирамиды. Тогда треугольники ASO и AKР с коэффициентом подобия 12:9. Высота пирамиды SO =√(AS²-AO²) или SO =√(144-27)=√117. Значит КР=SO*(9/12) или КР=(9/12)*√117. АР=АО*9/12 или АР=9√3/4. Тогда РО=АО-АР или РО=3√3-9√3/4=3√3/4. КО (высота сечения) по Пифагору: КО=√(КР²+РО²) или КO =√(117*81/144+27/16)=√(9234/144)=18√30/12=3√30/2. Тогда площадь сечения равна (1/2)*LM*KO или S=(1/2)*6*3√30/2=9√30/2=4,5√30 ед². Это ответ.
Давай сделаем чертёж вместе. Чертишь плоскость. Над нею бери точку В. Через точку В проводишь прямую, протыкающую плоскость. Под плоскостью на этой прямой отмечаешь точку А. Теперь отмечай точку К. Она на АВ и на плоскости. Через точку К проводи небольшой отрезок в плоскости. Это отрезок KL. Теперь соединяй точки А и L, продолжай дальше над плоскостью. Осталось провести ВС. Надо учесть, что ВС || KL. Получается картинка:Δ АВС, сделанный из плотного картона, проткнул нашу плоскость и прорезал её по KL.
Чертёж готов. Теперь смотрим: Δ АВС подобен Δ AKL (по равенству углов) ⇒ВС : KL = AC : AL,
3 : 1 = AC : 12
АС = 3·12 :1 = 36
АС = 36